
SPACE AND TIME PARTITIONING WITH HARDWARE SUPPORT FOR SPACE
APPLICATIONS

S. Pinto1, A. Tavares1, and S. Montenegro2

1Centro Algoritmi, Universidade do Minho, Guimaraes, Portugal
2Aerospace Information and Technology, Universität Würzburg, Germany

ABSTRACT

Complex and critical systems like airplanes and space-
craft implement a very fast growing amount of functions.
Typically, those systems were implemented with fully
federated architectures, but the number and complexity of
desired functions of todays systems led aerospace indus-
try to follow another strategy. Integrated Modular Avion-
ics (IMA) arose as an attractive approach for consolida-
tion, by combining several applications into one single
generic computing resource. Current approach goes to-
wards higher integration provided by space and time par-
titioning (STP) of system virtualization. The problem is
existent virtualization solutions are not ready to fully pro-
vide what the future of aerospace are demanding: perfor-
mance, flexibility, safety, security while simultaneously
containing Size, Weight, Power and Cost (SWaP-C).

This work describes a real time hypervisor for space ap-
plications assisted by commercial off-the-shell (COTS)
hardware. ARM TrustZone technology is exploited to
implement a secure virtualization solution with low over-
head and low memory footprint. This is demonstrated
by running multiple guest partitions of RODOS operat-
ing system on a Xilinx Zynq platform.

Key words: Space and Time Partition; Virtualization;
TrustZone; Real-Time; Embedded Systems; ARM.

1. INTRODUCTION

The market of complex and critical systems like cars,
airplanes and spacecraft have experienced unprecedented
growth over the last few years and is expected to continue
growing exponentially for the foreseeable future [1]. The
number and complexity of desired functions evolved in
such a way that fully federated architectures, where each
function is implemented in its own embedded controller,
become completely impracticable. Naturally, industries
rapidly tried to find other alternatives, and aeronautics pi-
oneering the shift from traditional federated architectures
to an IMA [2] architecture. By combining several ap-
plications into one generic powerful computing resource,

they were able to get a reduction on SWaP-C.

As space domain typically shares the same basic needs
of aeronautics, they rapidly concluded that IMA strat-
egy could be spun-in to the space domain. The prob-
lem was that the use of generic platforms altogether with
several COTS-based components with different critical-
ity and from several suppliers, imposed integration chal-
lenges namely in terms of reusability and safety. The
introduction of STP [3, 4] for separation of concerns
between functionally independent software components
was the solution to achieve higher level of integration,
while maintaining the robustness of federated architec-
tures. By containing and/or isolating faults, STP ap-
proach eliminates the need to re-validate unmodified ap-
plications on an IMA system, because the guaranteed iso-
lation it provides limits re-certification efforts only at the
partition level.

Virtualization technology has been used as an implemen-
tation technique to provide STP. Over the last few years
several works have been proposed in the aerospace do-
main [5, 6, 7, 8, 9, 10, 11, 12]. Some of them fol-
lowing a (software-based) full-virtualization approach,
while others implementing para-virtualization. Between
both approaches there is a trade-off between flexibility
and performance: full-virtualization incurs in a higher
performance cost, while para-virtualization incurs in a
higher design cost. Apart from performance and flexi-
bility, safety and, more recently, security became impor-
tant requirements that are driving the development of cur-
rent and next generation of safety-critical systems. Re-
search and industry focused so their attention on pro-
viding hardware support to assist and secure virtualiza-
tion from the outset. Intel, ARM and Imagination/MIPS
introduced their own COTS technologies, and naturally
several hardware-based solutions have been proposed
[13, 14, 15, 16, 17], although none of them specifi-
cally designed for the aerospace domain. Among exis-
tent COTS technologies, ARM TrustZone [18] is gain-
ing particular attention due to the ubiquitous presence
of TrustZone-enabled processors in the embedded sec-
tor. The problem is existent TrustZone-based solutions
[13, 14, 16] not only fail in providing ability for running
an arbitrary number of partitions (they mainly rely on
a dual-OS configuration), but also they (i.e., TrustZone-
based solutions) were not designed taking into considera-



tion the real time requirements of safety-critical systems.

Our work goes beyond state-of-art presenting a secure
virtualization solution assisted by COTS hardware. A
distinctive aspect of our hypervisor is the use of ARM
TrustZone technology to assist and secure real-time virtu-
alization for space. This is demonstrated by running sev-
eral unmodified RODOS OS partitions on a hybrid Xilinx
ZC702 platform with really low overhead and low mem-
ory footprint. Furthermore, with the recent announce-
ment of ARM about their decision to introduce TrustZone
technology in all Cortex-M and Cortex-R processors se-
ries, we strongly believe this solution as more than an
isolated implementation for a specific platform. From
our point of view, it will also provide the foundation to
drive next generation virtualization solutions for middle
and low-end space applications (e.g., small satellites).

2. RELATED WORK

The idea beyond implementation of STP through virtual-
ization in the aerospace domain is not new, and the first
attempts to start exploiting this technology were proposed
some years ago.

XtratuM [5] [6] was one of the first well known hypervi-
sors implemented to meet the safety critical requirements
of aerospace domain. Implemented in its original form
[5] as a Loadable Kernel Module (LKM) for x86 architec-
tures, it naturally evolved to be independent and bootable.
The result was XtratuM 2.0 [6], a type 1 (bare-metal) hy-
pervisor which employes para-virtualization techniques
and a strong effort in redesign to be closer to the ARINC-
653 standard. XtratuM was ported to reference platforms
for the spatial sector like LEON2 and LEON3, and re-
cently it was extended with multicore support under the
MultiPARTES project [7].

Steven VanderLeest start by developing an early proto-
type of an ARINC 653 implementation using the vir-
tualization technology of the open source Xen hypervi-
sor along with a Linux-based domain/partition OS [8].
The hypervisor, called as ARLX (ARINC 653 Real-time
Linux on Xen) [9], was later extended with more safety
and security capabilities, basically by applying formal
analysis techniques as well as certification. A distinctive
aspect of ARLX was its innovative approach to multicore
processors, by scheduling the I/O system partition in one
core and all the guest partitions on remaining cores. More
recently, in [19] Steven VanderLeest (with cooperation of
Big Players like Xilinx, Mentor Graphics and Lynx Soft-
ware) introduced some ideas of how to address the future
of avionics. He basically proposes the use of what we al-
most have already implemented: secure virtualization de-
ployed on heterogenous multicore platforms (HMP). He
conducted his discussion around the Xilinx Zynq Ultra-
scale+.

Hyunwoo Joe et al. [10] presented a prototype of a type 2
(hosted) full-virtualized hypervisor with kernel-level AR-

FlashFlashFlash

CPU

Non-Secure
Peripherals

SRAM
Secure

Peripherals
Flash

AMBA Interconnect

(non-secure)

DMA

Secure World Non-Secure World

Figure 1. TrustZone hardware architecture

INC 653 partitioning. The hypervisor was implemented
as an extension to the embedded Linux kernel with some
parts located into the kernel while others implemented as
system processes. Several optimization techniques were
used to alleviate the trap-and-emulate overhead, however
despite those efforts the prototype still showed a con-
siderable performance degradation. Authors promoted
reusability in detriment of performance, in order to not
modify certified flight software from previous missions.
The hypervisor was the first known implementation tar-
geting dual-core LEON4-based platforms.

RodosVisor [11, 12], developed by Tavares et al., is
a bare-metal hypervisor supporting both full and para-
virtualization, alongside with real-time capabilities. The
hypervisor is able to execute several applications accord-
ing to the IMA model, running on a Xilinx FPGA board
with built-in PowerPC core. It is an ARINC 653 quasi-
compliant hypervisor, since it implements ARINC 653
services but, not strictly following the APIs standard. A
distinctive aspect of RodosVisor is its object-oriented ap-
proach and the possibility of customization using gener-
ative programming techniques.

There are also other relevant academic and commercial
virtualization solutions, and Gu and Zhao [20] survey
a number of them for a variety of embedded domains
(not just for aerospace). They basically review hyper-
visors based on Xen, the Kernel-based Virtual Machine
(KVM) and L4. Several works trying to make use of
COTS-hardware to assist virtualization have been pro-
posed [14, 15, 16, 17], but none of them was specifically
designed for the aerospace domain.

3. ARM TRUSTZONE

TrustZone technology refers to security extensions avail-
able in all ARM Application-processors (Cortex-A) since
ARMv6 architecture. These hardware security exten-
sions virtualize a physical core as two virtual cores, pro-
viding two completely separated execution environments:



the secure and the non-secure worlds (Fig. 1). An extra
33rd bit - the NS (Non-Secure) bit - indicates in which
world the processor is currently executing. To switch be-
tween the secure and the non-secure world, a special new
secure processor mode, called monitor mode, was intro-
duced. To enter in the monitor mode, a new privileged
instruction was also specified - SMC (Secure Monitor
Call). The monitor mode can also be enabled by config-
uring it to handle interrupts and exceptions in the secure
side. The memory infrastructure can be also partitioned
into distinct memory regions, each of which can be con-
figured to be used in either worlds or both. The proces-
sor provides also two virtual Memory Management Units
(MMUs), and isolation is still available at the cache-level.
The AXI (Advanced eXtensible Interface) system bus
carries extra control signals to restrict access on the main
system bus, which enables TrustZone architecture to se-
cure also peripherals. The Generic Interrupt Controller
(GIC) supports both secure and non-secure prioritized in-
terrupt sources.

4. HYPERVISOR

RTZVisor (Real Time TrustZone-assisted Hypervisor) is
a bare-metal hypervisor carefully designed to meet the
specific requirements of real time space applications. Ex-
ploiting COTS ARM TrustZone technology, it is possi-
ble to implement strong spatial and temporal isolation
between guests. All data structures and hardware re-
sources are pre-defined and configured at design time,
and devices and interrupts can be directly managed by
specific guest partitions. Exceptions and errors are man-
aged through a special component called Health Moni-
tor, which is able to recover guests from undefined states.
Fig. 2 depicts the complete system architecture: RTZVi-
sor runs in the most privileged mode of the secure world
side, i.e., monitor mode, and has the highest privilege of
execution; unmodified guest OSes can be encapsulated
between the secure and non-secure world side - the active
guest partition runs in the non-secure world side, while
inactive guest partitions are preserved in the secure world
side; for active guest the RTOS runs in the kernel mode,
while RT applications run in user mode.

4.1. CPU

TrustZone technology virtualizes each physical CPU into
two virtual CPUs: one for the secure world and other
for the non-secure world. Between both worlds there are
an extensive list of banked registers. Typically, existent
TrustZone-based solutions implement only dual-OS sup-
port, where each guest is running in a different world. In
this particular case, the virtual CPU support is guaran-
teed by the hardware itself and therefore each world has
its own virtual hard-processor.

Our system is completely different. Since it is able to
support an arbitrary number of guest partitions, all of

TrustZone-enabled SoC

Application

Level A

RODOS
Guest 0

(active)

Application

Level B

RODOS
Guest 1

(inactive)

Application

Level C

RODOS
Guest x

(inactive)

U
se

r 
m

o
d

e
K

e
rn

e
l 

m
o

d
e

M
o

n
it

o
r 

m
o

d
e

Non-Secure World Secure World

...

Hypervisor

Figure 2. System Architecture

them executed from the non-secure side (once at a time),
dictating the sharing of the same virtual hard-processor,
supported by software. For that reason, the virtual soft-
processor state (vCPU) of each guest should be pre-
served. This virtual soft-processor state includes the core
registers for all processor modes (vCore), the CP15 reg-
isters (vCP15) and some registers of the GIC (vGIC), en-
compassing a total of 55 registers. RTZVisor offers as
many vCPUs as the hardware provides, but only a one-
to-one mapping between vCPU, guest and real CPU is
supported.

4.2. Memory

Traditional hardware-assisted memory virtualization re-
lies on Memory Management Unit (MMU) support for 2-
level address translation, mapping guest virtual to guest
physical addresses and then guest physical to host physi-
cal addresses. This MMU feature is a key feature to run
unmodified guest OSes, and also to implement isolation
between them.

TrustZone-enabled system on chips (SoCs) only has
MMU support for single-level address translation. Nev-
ertheless, they provide a component called TrustZone
Address-Space Controller (TZASC) which allows par-
tition of memory into different segments. This mem-
ory segmentation feature can be exploited to guarantee
strong spatial isolation between guests, basically by dy-
namically changing the security state of their memory
segments. Only the guest partition currently running in
the non-secure side should have its own memory segment
configured as non-secure, and the remaining memory as
secure. If the running guest tries to access a secure mem-
ory region (belonging to an inactive guest partition or ei-
ther the hypervisor), an exception is automatically trig-
gered and redirected to the hypervisor. Since only one
guest can run at a time, there is no possibility of the in-
active guests (belonging momentously to the secure side)
to change the state of another guest.



Hypervisor

RODOS 
Guest 0

RODOS 
Guest 1

RODOS 
Guest x

RODOS 
Guest 0

RODOS 
Guest 1

0x00000000

0x03FFFFFF

64MB

RODOS 
Guest x

0x08000000

0x0BFFFFFF

64MB

0x10000000

0x13FFFFFF

64MB

0x18000000

0x1BFFFFFF

64MB

0x40000000

0xFFFFFFFF

[S] Used Memory [NS] Used Memory

Unused Memory No memory

Figure 3. System memory

Memory segments can be configured with a specific gran-
ularity, which is implementation defined, depending on
the vendor. In the hardware under which our system was
deployed, Xilinx ZC702, memory regions can be config-
ured with a granularity of 64MB, which mean for a mem-
ory of 1GB it is possible to isolate a total of 15 guest par-
titions (one memory segment is for the hypervisor itself).
Our system relies on the TZASC to implement isolation
between guests, and MMU supporting only single-level
address translation. It means that guests have to know
the physical memory segment they can use in the sys-
tem, requiring relocation and consequent recompilation
of the guest OS. Fig. 3 depicts the memory setup and
respective secure/non-secure mappings, for a virtualized
system consisting in the hypervisor and three guest par-
titions. In this specific configuration, the hypervisor uses
the first memory segment (0x00000000 - 0x03FFFFFF),
and has access to all memory. RODOS Guest-0 uses
the third 64MB memory segment, and is only allowed to
access one non-secure memory segment (0x08000000 -
0x0BFFFFFF); RODOS Guest-1/x are mapped the same
way, but within their respective memory segment.

4.3. Scheduler

RTZVisor implements a cyclic scheduling policy, to en-
sure one guest partition cannot use the processor for
longer than its defined CPU quantum. The time of each
slot can be different for each guest, depending on its crit-
icality classification, and is configured at design time. By
adopting a variable time slot strategy instead of a mul-
tiple fixed approach, the hypervisor interference is mini-
mized and it is ensured higher performance and determin-
istic execution, because guest is only interrupted when
the complete slot is over.

4.4. Devices

TrustZone technology allows devices to be (statically or
dynamically) configured as secure or non-secure. This
hardware feature allows the partition of devices between
both worlds while enforcing isolation at the device level.

RTZVisor implements device virtualization adopting a
pass-through policy, which means devices are managed
directly by guest partitions. To ensure strong isolation
between them, devices are not shared between guests and
are assigned to respective partitions at design time. To
achieve this strong isolation at device level, devices as-
signed to guest partitions are dynamically configured as
non-secure or secure, depending on its state (active or
inactive). This guarantees an active guest cannot com-
promise the state of a device belonging to another guest,
and if an active guest partition tries to access a secure
device then an exception will be automatically triggered
and handled by RTZVisor. Devices assigned to the hyper-
visor itself (e.g., Hypervisor timer) are always configured
as secure and can never be directly accessed by any guest.

4.5. Interrupts

In TrustZone-enabled SoCs, the GIC supports the coexis-
tence of secure and non-secure interrupt sources. It al-
lows also the configuration of secure interrupts with a
higher priority than the non-secure interrupts, and has
several configuration models that allow to assign IRQs
and FIQs to secure or non-secure interrupt sources.

RTZVisor configure interrupts of secure devices as FIQs,
and interrupts of non-secure devices as IRQs. Secure in-
terrupts are redirected to the hypervisor, while non-secure
interrupts are redirected to the active guest (without hy-
pervisor interference). When a guest partition is under
execution, only the interrupts managed by this guest are
enabled, which minimizes inter-partition interferences
through hardware. Interrupts of inactive guest partitions
are momentaneously configured as secure, but disabled.
This mean the interrupt is pending in the distributor, but is
not forwarded to the interface. As soon as the respective
guest become active, the interrupt will be then processed.
The prioritization of secure interrupts avoid active guest
partition to perform a denial-of-service attack against the
secure side (hypervisor).

4.6. Time

Temporal isolation in virtualized systems is typically
achieved using two levels of timing: the hypervisor level
and the guest level. For the guest level, hypervisors typi-
cally provide timing services which allow guests to have
notion of virtual or real time. For mission critical real
time systems, where time-responsiveness plays a critical
role, guest partitions have necessarily to keep track of the
wall-clock time.



Table 1. Health monitoring events and actions

Hypervisor Guest
Event name pre-def. action pre-def. action

Guest triggered

DATA ABORT — Reboot
PREF ABORT — Reboot
UNDEF INST — Reboot

Hypervisor triggered

MEM VIOL Log Reboot
DEV VIOL Log Reboot
NO GUESTS Reset —

RTZVisor implements also two levels of timing: it has
internal clocks for managing the hypervisor time, and in-
ternal clocks for managing the guest partitions time. The
timers dedicated to the hypervisor are configured as se-
cure devices, i.e., they have higher privilege of execution
than the timers dedicated to the active guest. This means
that despite of what is happening in the active guest, if
an interrupt of a timer belonging to the hypervisor is trig-
gered, the hypervisor takes control of the system. When-
ever the active guest is executing, the timers belonging to
the guest are directly managed and updated by the guest
on each interrupt. The problem is how to deal and handle
time of inactive guests. For inactive guests the hypervi-
sor implements a virtual tickless timekeeping mechanism
based on a time-base unit that measures the passage of
time. Therefore, when a guest is rescheduled, its internal
clocks and related data structures are updated with the
time elapsed since its previous execution.

4.7. Health Monitor

The Health Monitor (HM) component is the module re-
sponsible for detecting and reacting to anomalous events
and faults. Although at an early stage of development,
once an error or fault is detected, RTZVisor reacts to the
error providing a simple set of predefined actions. The
complete list of events and pre-defined actions can be
seen in Tab. 1. For example, at the hypervisor level, if
a guest tries to access a portion of memory outside its
boundaries, the hypervisor detects and registers the space
violation and immediately reboots the guest.

5. EVALUATION

Our solution was evaluated on a Xilinx ZC702 board tar-
geting a dual ARM Cortex-A9 running at 600MHz. In
spite of using a multicore hardware architecture, the cur-
rent implementation only supports a single-core config-

Table 2. Memory footprint results (bytes)

.text .data .bss Total

Hypervisor 5568 192 0 5760

Table 3. Context-switch evaluation (microseconds)

Context-switch operation Time (µs)

Timer interrupt management 1.620
Save vCore context 1.873

Scheduler 4.000
vGIC context-switch 31.533
Time management 53.033

Memory configuration 1.053
Restore vCore context 1.963

TOTAL 95.075

uration. During our evaluation, MMU, data and instruc-
tion cache and branch prediction (BP) support for guests
were disabled. We focused on the following metrics: (i)
memory footprint, (ii) context-switch time and (iii) per-
formance.

5.1. Memory footprint

To access memory footprint results we used the size tool
of ARM Xilinx Toolchain. Tab. 2 presents the collected
measurements, where boot code and drivers were not take
into consideration. As it can be seen, the memory over-
head introduced by the hypervisor - and in fact the trusted
computing base (TCB) of the system - is really small, i.e.,
around 6KB. The main reasons behind this low memory
footprint are (i) the hardware support of TrustZone tech-
nology for virtualization and (ii) the careful design and
static configuration of each hypervisor component.

5.2. Context switch

To evaluate the guest context switch time we used the
Performance Monitor Unit (PMU) component. To mea-
sure the time consumed by each internal activity of the
context-switch operation, breakpoints were added at the
beginning and end of each code portion to be measured.
Results were gathered in clock cycles and converted
to microseconds accordingly to the processor frequency
(600MHz). Each value represents an average of ten col-
lected samples.



0.00 20.00 40.00 60.00 80.00 100.00

Cooperative
Scheduling

Preemptive
Scheduling

Interrupt
Processing

Interrupt
Preemption
Processing

Synchronization
Processing

Message
Processing

Performance
N-RODOS TZ-RODOS

Figure 4. Thread-Metric benchmarks results

The list of activities as well as the measured time are
presented in Tab. 3. As it can be seen, the activi-
ties which present higher consuming time are the virtual
GIC context-switch and the time management. In both
cases, there is a chance to optimize those operations, be-
cause our current solution is more focused on generaliza-
tion instead of particularization. This mean that context-
switch operation was implemented to be as much OS-
independent as possible, and such a design decision di-
rectly and negatively impact interrupt and time manage-
ment. We are completely sure that if we redesign those
parts to just fit with RODOS, the impact on performance
will be significantly smaller.

5.3. Performance

The Thread-Metric Benchmark Suite consists of a set of
benchmarks specific to evaluate RTOSes performance.
The suite comprises 7 benchmarks, evaluating the most
common RTOS services and interrupt processing: coop-
erative scheduling; preemptive scheduling; interrupt pro-
cessing; interrupt preemption processing; synchroniza-
tion processing; message processing; and memory alloca-
tion. For each benchmark the score represents the RTOS
impact on the running application, where higher scores
correspond to a smaller impact.

For the first part of the experiment, RTZVisor was con-
figured with a 10 milliseconds guest-switching rate. The
system was set to run one single guest partition, and the
hypervisor scheduler was forced to reschedule the same
guest, so that results can translate the full overhead of
the complete guest-switching operation. We ran bench-
marks in the native version of RODOS and compared
them against the virtualized version. Fig. 4 presents the
achieved results, corresponding to the normalized values
of an average of 100 collected samples for each bench-

Table 4. Correlation between guest-switching rate and
performance

Performance

Rate (ms) 1 2 5 10 50 100
Perf. (%) 91.7 95.7 98.3 99.1 99.8 99.9

mark. From the experiments it is clear that the virtual-
ized version of RODOS only presents a very small per-
formance degradation when compared with its native ex-
ecution, i.e., <1%.

In the second part of the experiment, we evaluated how
the guest-switching rate correlates with guest perfor-
mance. To measure the influence of guest-switching rate
in the performance loss, we repeated the experiments for
a rate within a time window between 1 millisecond to 100
milliseconds. Tab. 4 shows the achieved results, where
each column corresponds to the average performance of
the measured results for the 6 benchmarks. As it can be
seen, the performance of the virtualized RODOS range
from 91.7% to 99.9%, respectively.

6. CONCLUSION

Complexity of modern safety-critical systems is growing
at a frenetic rate. To accompany this trend, aeronautics
and space industries are shifting from full federated ar-
chitectures to an IMA approach. Virtualization technol-
ogy has been used as an implementation technique to pro-
vide STP, but existent virtualization solutions for space
are not ready to fully tackle the upcoming challenges of
aerospace industry.

This paper describes a real time hypervisor for space ap-
plications assisted by COTS hardware. The system was
deployed on a commercial Xilinx ZC702 board, demon-
strating how it is possible to host an arbitrary number
of guests on the non-secure world side of TrustZone-
enabled processors. The secure hypervisor is flexible
enough to run unmodified guest OSes at higher per-
formance, while guaranteeing strong isolation between
guests. Our evaluation demonstrated virtualized OSes
run with more than 99% performance for a 10 millisec-
onds guest-switching rate. The reduced TCB size of
RTZVisor decreases also effort for certification. Our so-
lution makes use of several technologies needed for the
demanding challenges of future aerospace applications:
secure virtualization deployed under hybrid platforms.

Research roadmap will focus on three main directions.
First, we will explore Xilinx Zynq Ultrascale+ to extend
our solution for hybrid HMP. HMP are considered as the
next generation multicore platforms, and they are being
seen as the only path for adequate functionality consoli-



dation and timing predictability. From another perspec-
tive, we will also explore the TrustZone technology of the
new (ARMv8) Cortex-M and Cortex-R processors series
to develop virtualization solutions for middle and low-
end space applications. With the current trend of small
satellites going viral, this technology can potentially im-
pact the way those satellites are being built. Finally,
and essentially because complexity is becoming imprac-
ticable to be manually managed, another part of our in-
vestigation will tackle the development of mechanisms
and tools to assist design automation. We have already
some on-going experiments around the development of
Domain Specific Languages (DSL) to help in the config-
uration, customization and code generation of RTZVisor.

ACKNOWLEDGMENTS

This work has been supported by COMPETE: POCI-
01-0145-FEDER-007043 and FCT - Fundação para a
Ciência e Tecnologia - (grant SFRH/BD/91530/2012 and
UID/CEC/00319/2013), and also by Space Agency of the
German Aerospace Center (DLR) with federal funds of
the German Federal Ministry of Economics and Technol-
ogy (BMWi) under 50RM1203.

REFERENCES

[1] Abella J. et al., Towards Improved Survivability in
Safety-critical Systems, Proceedings of the 17th IEEE
International On-Line Testing Symposium (IOLTS),
Athens, Greece, 2011.

[2] RTCS, DO-297: Integrated Modular Avionics (IMA)
Development Guidance and Certification Considera-
tions, Washington DC, USA, 2005.

[3] Diniz N. et al., ARINC 653 in Space, Proceedings of
the Data Systems in Aerospace (DASIA), Edinburgh,
Scotland, 2005.

[4] Windsor J. et al, Time and space partitioning in
spacecraft avionics, Proceedings of the 3rd IEEE In-
ternational Conference on Space Mission Challenges
for Information Technology (SMC-IT), California,
USA, 2009.

[5] Masmano, M. et al., An overview of the XtratuM
nanokernel, Proceedings of the Workshop on Oper-
ating Systems Platforms for Embedded Real-Time
Applications (OSPERT), Palma de Mallorca, Spain,
2005.

[6] Crespo A. et al., XtratuM an Open Source Hyper-
visor for TSP Embedded Systems in Aerospace, Pro-
ceedings of the Data Systems in Aerospace (DASIA),
Istanbul, Turkey, 2009.

[7] Crespo, A. et al., Multicore partitioned systems based
on hypervisor, Preprints of the 19th World Congress
- The International Federation of Automatic Control,
Cape Town, South Africa, 2014.

[8] VanderLeest S.H., ARINC 653 hypervisor, Proceed-
ings of the 29th IEEE/AIAA Digital Avionics Systems
Conference (DASC), Utah, USA, 2010.

[9] VanderLeest, S.H. et al., A safe & secure arinc 653
hypervisor, Proceedings of the 32nd IEEE/AIAA Dig-
ital Avionics Systems Conference (DASC), New York,
USA, 2013.

[10] Joe H. et al., Full virtualizing micro hypervisor
for spacecraft flight computer, Proceedings of the
31st IEEE/AIAA Digital Avionics Systems Confer-
ence (DASC), Virginia, USA, 2012.

[11] Tavares A. et al., RodosVisor - an Object-Oriented
and Customizable Hypervisor: The CPU Virtualiza-
tion, Embedded Systems, Computational Intelligence
and Telematics in Control, No. 1, 2012.

[12] Tavares A. et al., Rodosvisor - An ARINC 653
quasi-compliant hypervisor: CPU, memory and I/O
virtualization, Proceedings of the 17th IEEE Confer-
ence on Emerging Technologies & Factory Automa-
tion (ETFA), Krakow, Poland, 2012.

[13] Cereia M. et al., Virtual machines for distributed
real-time systems, Computer Standards & Interfaces
31.1, 2009.

[14] Sangorrin D. et al., Dual operating system architec-
ture for real-time embedded systems, Proceedings of
the 6th International Workshop on Operating Systems
Platforms for Embedded Real-Time Applications (OS-
PERT), Brussels, Belgium, 2010.

[15] Varanasi P. et al., Hardware-supported virtualiza-
tion on ARM, Proceedings of the Second Asia-Pacific
Workshop on Systems, Shanghai, China, 2011.

[16] Pinto S. et al., Towards a Lightweight Embedded
Virtualization Architecture Exploiting ARM Trust-
Zone, Proceedings of the 20th IEEE Conference on
in Emerging Technologies & Factory Automation
(ETFA), Barcelona, Spain, 2014.

[17] Moratelli C. et al., Full-Virtualization on MIPS-
based MPSOCs embedded platforms with real-time
support, Proceedings of the 27th Symposium on In-
tegrated Circuits and Systems Design (SBCCI), Ara-
caju, Brazil, 2014.

[18] ARM, ARM Security Technology - Building a Se-
cure System using TrustZone Technology, Technical
Report PRD29-GENC-009492C, 2009.

[19] VanderLeest S.H. et al., MPSoC hypervisor: The
safe & secure future of avionics, Proceedings of the
34th IEEE/AIAA Digital Avionics Systems Confer-
ence (DASC), Prague, Czech Republic, 2015.

[20] Gu, Z. et al., A State-of-the-Art Survey on Real-
Time Issues in Embedded Systems Virtualization,
Journal of Software Engineering and Applications, pp.
277-290, 2012.


