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ABSTRACT

Safety has been, for a long time, a major concern for
the aerospace industry. The recent increased intercon-
nectivity, altogether with the on-going trend for adopt-
ing commercial off-the-shelf computing systems, have
raised several security concerns, and proven security is
gaining attention as a vulnerability that can also affect
safety. Current approaches go towards isolation provided
by space and time partitioning of system virtualization.
The problem is existent virtualization solutions were pri-
marily prepared to deal with accidental hardware faults
or software bugs, and are not ready to fully manage ma-
licious or intentional faults.

This work describes the implementation of SecSSy hy-
pervisor. SecSSy is a hardware-assisted virtualization so-
lution, which addresses security at several stages of sys-
tem development. SecSSy relies on a secure hardware
architecture as the foundation to implement a secure soft-
ware architecture, all steamed by a safe and secure de-
velopment process. To the best of authors’ knowledge,
this is the first solution offering such a complete security-
safety synergy for aerospace systems.
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TrustZone; Real-Time, ARM.

1. INTRODUCTION

Safety has definitely been the primary concern of
aerospace system architects for a long time, but, recently,
the mindset started to change. The increasing connectiv-
ity of these systems to external networks, as well as the
increasing adoption of commercial off-the-shelf (COTS)
components for lowering costs, have been significantly
increasing the attack surface, and promoting security also
as a major requirement for the aerospace industry [1, 2].
The recent discussion around the possible hacking per-
formed by Chris Roberts in a United Airlines flight [3]
has raised several questions, and proven security is gain-
ing attention as a vulnerability that can also affect safety
in unanticipated ways [4]. These systems are made of
a very wide range of software and hardware compo-

nents, from high-criticality controllers, to low-criticality
in-flight entertainment systems, and consequently, the
avionics platform might be the target of security issues
that could have an impact on the aircraft safety [1, 4].

Space and time partitioning (STP) provided by means of
system virtualization has been used as an implementa-
tion technique to consolidate and integrate different ap-
plications into one single generic computing resource,
while guaranteeing separation of concerns between func-
tionally independent software components [5]. Over the
last few years several embedded hypervisors have been
proposed in the aerospace domain [6, 7, 8, 9], but these
systems were primarily prepared to deal with acciden-
tal hardware faults or software bugs, not malicious or
intentional faults. Recently, Steven VanderLeest et al.
[2] presented his vision about how to address the safety
and security challenges of next-generation of airborne
computing systems. He pointed the use of hardware-
assisted virtualization (ARM Virtualization Extensions),
altogether with hardware security-oriented technologies
(ARM TrustZone), as a promising approach to provide
robust partitioning and isolation. We have also imple-
mented RTZVisor (Real-Time TrustZone-assisted Hyper-
visor) [10] as a real-time hypervisor for space applica-
tions assisted by ARM TrustZone [11]. The distinct as-
pect of RTZVisor is the use of a security-oriented technol-
ogy for guaranteeing strong hardware-enforced isolation
between the multiple guest operating systems (OSes).

Both aforementioned solutions [2, 10] propose the use
of robust, hardware-enforced, partitioning via virtual-
ization to address both safety and security issues. We
believe this is not enough to achieve the desired se-
curity level. Security must be addressed through best
practice-based design, common guidelines, and context-
awareness [12, 13], without risking other system design
properties, such as safety and real-time. This work de-
scribes the implementation of SecSSy. SecSSy is an ex-
tended version of RTZVisor which targets security also
from the onset, by applying a secure development pro-
cess. The software architecture was reinforced by using
an object-oriented implementation, applying coding stan-
dards, and using several microkernel principles. To the
best of our knowledge, this is the first hypervisor offering
such a complete security-safety synergy for aerospace.



2. BACKGROUND

2.1. ARM TrustZone

TrustZone technology [11, 14] refers to the security ex-
tensions introduced with ARMv6K in all ARM Cortex-
A processors. The TrustZone hardware architecture can
be seen as a dual-virtual system, partitioning all system’s
physical resources into two isolated execution environ-
ments. Recently, ARM also decided to extend TrustZone
for the Cortex-M processor family, which presents slight
differences from TrustZone for application processors.
The remainder of this section is focused on the TrustZone
specification for Cortex-A processors.

At the processor level, the most significant architectural
change is its partition into two worlds: the secure and
the non-secure worlds. A new 33rd processor bit, the
Non-Secure bit, indicates in which world the processor
is executing. To preserve the processor state during the
world switch, TrustZone adds an extra processor mode:
the monitor mode. Software stacks in the two worlds
can be bridged via a new privileged instruction - Secure
Monitor Call (SMC). The monitor mode can also be en-
tered by configuring it to handle IRQ, FIQ, and Aborts
exceptions in the secure world. Several special registers
are banked, such as a number of System Control Copro-
cessor (CP15) registers. The TrustZone Address Space
Controller (TZASC) extends TrustZone security to the
memory infrastructure. TZASC can partition the DRAM
into different secure and non-secure memory regions. Se-
cure world applications can access normal world mem-
ory but the reverse is not possible. The TrustZone-aware
Memory Management Unit (MMU) provides two distinct
MMU interfaces, and isolation is still available at the
cache-level. System devices can be dynamically config-
ured as secure or non-secure through the TrustZone Pro-
tection Controller (TZPC). To support the robust man-
agement of secure and non-secure interrupts, the Generic
Interrupt Controller (GIC) provides both secure and non-
secure prioritized interrupt sources.

2.2. RTZVisor

RTZVisor [10] is a bare-metal hypervisor carefully de-
signed to meet the specific requirements of real-time
space applications. RTZVisor exploits COTS ARM
TrustZone technology to implement strong spatial and
temporal isolation between guests (Figure 1). All data
structures and hardware resources are predefined and
configured at design time, and devices and interrupts can
be directly managed by specific guest partitions. Ex-
ceptions and errors are managed through a special com-
ponent called Health Monitor, which is able to recover
guests from undefined states.

RTZVisor multiplexes the several guest OSes over the
non-secure side. This means it requires careful handling
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Figure 1. RTZVisor System Architecture

of shared hardware resources, such as processor regis-
ters, memory, caches, MMU, devices, and interrupts.
Processor registers are preserved into a specific virtual
machine control block (VMCB). This virtual processor
state (vCPU) includes the core registers for all proces-
sor modes (vCore), the CP15 registers (vCP15) and some
registers of the GIC (vGIC). RTZVisor offers as many
vCPUs as the hardware provides, but only a one-to-one
mapping between vCPU, guest and real CPU is sup-
ported.

The strong spatial isolation is ensured through the
TZASC, by dynamically changing the security state of
the memory segments. Only the guest partition cur-
rently running in the non-secure side has its own memory
segment configured as non-secure, while the remaining
memory is configured as secure. The granularity of the
memory segments, which is implementation defined, lim-
its the number of supported virtual machines (VMs). Fur-
thermore, since TrustZone-enabled processors only pro-
vide MMU support for single-level address translation,
it means that guests have to know the physical memory
segment they can use in the system, requiring relocation
and consequent recompilation of the guest OS. Tempo-
ral isolation is achieved through a cyclic scheduling pol-
icy, ensuring one guest partition cannot use the processor
for longer than its defined CPU quantum. The time of
each slot can be different for each guest, depending on
its criticality classification, and is configured at design
time. Time management is achieved implementing two
levels of timing: there are timing units for managing the
hypervisor time, and others for managing the partitions
time. Whenever the active guest is executing, the timers
belonging to the guest are directly managed and updated
by the guest on each interrupt. For inactive guests the hy-
pervisor implements a virtual tickless timekeeping mech-
anism, which ensures when a guest is rescheduled, its in-
ternal clocks and related data structures are updated with
the time elapsed since its previous execution.

RTZVisor implements device virtualization adopting a
pass-through policy: devices are managed directly by
guest partitions. To ensure strong isolation between them,
devices are not shared between guests and are assigned to
respective partitions at design time. To achieve isolation
at device level, devices assigned to guest partitions are



dynamically configured as non-secure or secure, using
the TZPC. This guarantees an active guest cannot access
or compromise the state of a device assigned to another
guest. For interrupt managment, RTZVisor configures in-
terrupts of secure devices as FIQs, and interrupts of non-
secure devices as IRQs. Secure interrupts are redirected
to the hypervisor, while non-secure interrupts are directly
sent to the active guest. Interrupts of inactive guest parti-
tions are momentaneously configured as secure, but dis-
abled; as soon as the respective guest becomes active, the
interrupt will then be processed.

3. SECSSY HYPERVISOR

SecSSy hypervisor is a refactored version of RTZVi-
sor aiming to achieve a higher degree of safety and
security. In terms of system software architecture,
the refactoring mainly encompasses the implementation
of a microkernel-like architecture, following an object-
oriented approach (C++), complemented by the imple-
mentation of a secure boot process and secure memory
layout.

Besides the microkernel architecture, which is inherently
more secure than a monolithic one [15, 16], this imple-
mentation targets security from the onset by applying a
secure development process and improving code modu-
larity, structure and clarity. This is achieved by employ-
ing adapted test-driven development (TDD) techniques
[17] throughout the development process, while taking
advantage of the benefits provided by object-oriented
programming and several C++ features such as a stronger
type checking and linkage. Nevertheless, only a subset of
the C++ language suitable for secure embedded systems
is used, complemented by MISRA C++ coding guide-
lines [12, 13].

3.1. Microkernel-like Architecture

Figure 2 depicts the SecSSy hypervisor system architec-
ture. This architecture provides two kinds of partitions.
Similarly to RTZVisor, guest OS partitions run over VMs
in the non-secure world, while inactive guests are kept
protected in the secure world. Following the principles of
the least privilege and of minimality [18], only the Sec-
SSy core runs with the highest privilege, i.e., in moni-
tor mode. The core implements the basic hardware re-
source management, partition management, scheduling
and inter-partition communication (IPC). Other services
and drivers must be placed in a new kind of partition, im-
plemented as secure world tasks, which run in the user
mode of the secure world. The services and function-
ality provided by these tasks can be accessed by other
partitions via secure IPC facilities, preventing trusted
computing base (TCB) bloating while minimizing fault-
propagation between hypervisor modules that would have
been, otherwise, included within the core [19].
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Figure 2. SecSSy System Architecture

Although services and drivers could have been imple-
mented in VMs running in the non-secure world, which
would make unnecessary the extra core complexity and
the increase systems TCB, implementing them as secure
world tasks provides two main benefits. First, consider-
ing the existence of the dual-interface of the TrustZone-
aware MMU, the hypervisor manages the secure page ta-
bles, providing a virtual address space for each task. This
enables finer-grained level of control over task memory
than that given by the TZASC, which eliminates the need
for relocation and recompilation for specific memory re-
gions. Secondly, since world isolation is present at cache
level, there is no need to flush caches when switching
from a guest VM to a secure world task due to a ser-
vice request via IPC, which significantly improves per-
formance for RPC-like communication, typical on micro-
kernel systems.

This approach might, however, lead to high levels of IPC
traffic to access services and drivers. To mitigate the re-
sultant impact on real-time behavior and overall system
performance due to context-switch overhead and schedul-
ing decisions, critical secure world tasks might be mi-
grated to the core, based on a study of the up/down calls
frequency for a given application.

3.2. Secure Boot Process

Apart from the system software architecture, security
starts by ensuring a secure boot process, which is re-
sponsible for establishing a chain of trust that validates
all levels of secure software running on the device. For
guaranteeing a complete chain of trust, hardware trust an-
chors must exist, namely, secure storage facilities. Re-
garding our current target platform, the Xilinx ZC702,
a number of secure on-chip storage sources were identi-
fied, which include volatile and non-volatile memories.
Off-chip memories should only be used to store secure
encrypted images (boot time), or non-trusted components
such as guest partitions (run time).

After the power-on and reset sequences have completed,
code on an on-chip ROM begins to execute. This ROM
memory cannot ever be updated, acting as the root of



trust of the system. It starts the whole security chain by
ensuring authentication and decryption of the first-stage
bootloader (FSBL) image. The decrypted FSBL is then
loaded into an on-chip RAM and control is turned over to
it. The FSBL is then responsible for the authentication,
decryption and loading of the secure system image (con-
taining SecSSy, secure tasks and guest partitions). If any
of the steps on the authentication and decryption of the
FSBL or the system image is not successful, the CPU is
set into a secure lockdown state.

Partition images are not individually encrypted. As afore-
mentioned, they are part of the overall system image.
Nevertheless, the addition of another stage of verifica-
tion, at the partition level, would help to achieve a sup-
plementary level of runtime security for the entire system
lifetime. By including an attestation service as a secure
task, it would be possible to check and attest partition
identity and integrity at boot time, as well as other key
components at any time.

3.3. Secure Memory Layout

A secure memory layout, depicted in Figure 3, was de-
vised and tailored specifically for the platform where our
system is currently deployed, a ZC702 board. As in
RTZVisor, guest partitions are placed in their attributed
memory regions which are dynamically configured as se-
cure or non-secure depending on whether the guest is ac-
tive or inactive. All the code running in the secure world
- SecSSy core and secure tasks - is placed in the first 64
MB region, which is always configured as secure mem-
ory. Here, only the first 256KB are used, since it cor-
responds to on-chip memory (OCM) on Zynq. OCM is
considered a more secure storage since the memory has
no address or data lines in the system on chip device pins,
i.e., it cannot be tampered with from the outside, pre-
venting attacks such as cold boot. However, OCM is not
safe in the sense it does not provide any error-detection
and correction (EDAC) mechanisms which can detect and
correct data corruption due to, for example, radiation in-
terferences. Finally, critical data belonging to the SecSSy
core is placed apart from other code and data and iso-
lated by unused memory areas populated by magic val-
ues, which can later be monitored for integrity (please
refer to Section 6). This enables the detection and miti-
gation of buffer overflow attacks which target core critical
data structures.

3.4. Secure IPC

Inter-partition communication is achieved using ports,
which are kernel objects that represent endpoints through
which information flows. A partition owns a port and is
the only one who can read messages from that specific
endpoint.

Only asynchronous communication is implemented,
meaning that the partition’s execution is not blocked
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when sending or receiving a message. In contrast, syn-
chronous communication partitions block at send and
receive, resulting in a rendezvous-style communication
[18]. Thus, our implementation requires double data
copy and buffering messages in the kernel, while a syn-
chronous implementation would allow for direct copying
between partition address spaces. This extra overhead re-
sults in an understandable performance cost. However,
by focusing on asynchronous communication, we avoid
the asymmetric-trust problem [20]. This issue is specific
to synchronous communication and may result in dead-
locks or partitions hanging indefinitely while waiting for
a communication event from a compromised partition.

To mediate port operations, we have implemented a
capability-based access control mechanism [21]. A ca-
pability is a reference to a kernel object, in this specific
case, a port, which can be assigned to one or more par-
titions. Owning a capability implies at least some rights
over access and operation invocation on the port. Hence,
capability aggregates information about its owner, the
kernel object it references, and the set of rights over it.
As aforementioned, a port owner is the only one who can
read messages from the port, thus, its port capability will
be the only that references that port with the read right
set. Every time a partition invokes an operation on one
of its port capabilities, its rights are checked. Each par-
tition operates on a virtual capability-space, and each ca-
pability reference is translated to a capability on a global
and internal capability-space. Thus, it becomes concep-
tually impossible for a partition to operate on objects for
which it does not possess a capability, as only the capa-
bilities on its capability-space are accessible. The usage
of capabilities to mediate IPC port operations provides a
fine-grained control over communication, by enabling ca-
pability distribution for each kernel object in addition to
specific right assignment to each partition. This enables
system designers to accurately specify the existing com-
munication channels between partitions while maintain-
ing some flexibility and preserving the principle of least
authority [18, 21].

The available IPC primitives, which are always opera-
tions on a port, include Send, Receive and SendReceive.
When the Send operation is invoked, the kernel will store
the content of a message in kernel’s space, addressing it
to the port. For the Receive, the partition asks the kernel



if there’s some stored message associated with the port.
The SendReceive extends the Send operation by generat-
ing a reply capability for the port, i.e, a capability with
send rights, which can only be used once. This capabil-
ity is then inserted in the capability-space of the owner
of the port to which the message is being sent to. Reply
capabilities are thus leveraged to securely perform client-
server type communications, since they remove the need
to grant servers full-time access to client ports.

Ports can be configured by its owner to optionally receive
asynchronous events upon message arrival. For guest
partitions this encompasses a virtual interrupt injection
while for secure-world tasks this is accomplished by an
Unix signal style upcall. For synchronization purposes,
a semaphore kernel object was created, whose access is
also managed through capabilities. Finally, as a security
preventive measures, system call parameters on IPC op-
erations are subject of intensive sanity checking and data
address space verifications. Furthermore message inter-
nal buffers are flushed whenever a message is read.

3.5. Coding Standard

For the development of critical systems, the usage of a
coding standard is imperative to improve code safety, se-
curity, maintainability, and portability. The use of C++
language can be even more troublesome for critical em-
bedded systems as some of its features are not fully spec-
ified. Often times, C++ features lead to interpretation
mistakes where the code behavior differs from what the
programmer expects. Other features are implementation
dependent, affecting the portability of the code. Also,
some C++ statements may be ambiguous since compilers
implicitly perform some operations such as type casting.

To address these issues, SecSSy hypervisor is being de-
veloped following the MISRA C++ standard [13]. Due
to the various pitfalls of the C++ language, that make it
ill-advised for developing critical systems, the main ob-
jective of the MISRA C++ guidelines are to define a safer
subset of the C++ language suitable for use in safety-
related embedded systems. The MISRA guidelines de-
fine this safer subset with a series of 228 rules divided
across several categories including expressions, names-
paces and preprocessing directives, just to name a few.
The main purpose of these rules is to restrict the occur-
rence of known pitfalls and undefined behaviors of the
C++ language. Many rules require the programmer to
be explicit, especially regarding types used in expres-
sions, solving many of the ambiguities of C++, while
others address areas like code portability. MISRA also
recommends the use of static analysis tools/techniques,
whenever possible, not only for validation but also to en-
force the compliance with its guidelines. The compli-
ance of SecSSy code has been enforced with QA-C++
version 4.1.0 from Programming Research 1, which is
a static analysis tool for C++ used by industry-leading

1http://www.programmingresearch.com/static-analysis-
software/qac-qacpp-static-analyzers/
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companies. By itself, the QA-C++ tool does not provide
MISRA checks. To achieve that, it was necessary to use
the MISRA compliance module version 1.5.1 that inte-
grates with the QA-C++ static analyzer and covers 92%
of all the subset’s enforceable rules.

4. SECSSYML

Designed to cope with the increasing complexity and
variability of hypervisor related modules, the SecSSyML
is the modeling language that supports our semantically-
enriched modeling infrastructure. Its architecture can be
seen in Figure 4.

To achieve a high degree of reliability and extensibil-
ity, the infrastructure manages constructs described in
Web Ontology Language (OWL), which is a well-known,
widely used knowledge representation language. A hy-
pervisor metamodel is derived from an upper ontology,
which provides semantic interoperability across all hy-
pervisor domains [23]. Rules can be externally extended
to cope with very specific scenarios and increase the over-
all expressiveness of the ontologies. Variabilities may be
asserted as domain knowledge and are solved when the
metamodel is instantiated, while inferable model paths
are realized without human intervention. This approach
minimizes human error and maximizes productivity.

The infrastructure’s main idea is to create a model, based
on the asserted knowledge, in a guided way, while guar-
anteeing its validation and implementation viability. In
the implementation stage, it also acts as a bridge to con-
vey valid and suitable knowledge to the implementation
tools, automating code refactoring and implementation
deployment. These tools are independent from the infras-
tructure and must be provided by the user. The different
layers of system design abstract the model designer from



ontological axioms and domain details. By removing this
burden from the user, variabilities become easier to man-
age and automate, avoiding what would otherwise be a
tedious, error-prone process.

The next step in the modeling infrastructure is to develop
a tool which assists the conversion of independent ontolo-
gies to comply with the normalized concepts provided by
the upper ontology. This process will generate a con-
siderable expansion of the domain knowledge, granting
system developers a higher degree of detail and seman-
tic richness. This tool will also play a critical role in
avoiding human errors, which are a substantial problem
when dealing with monotonous and repetitive tasks. By
guiding the user and detecting incoherencies, the opera-
tion will also increase the performance of the infrastruc-
ture’s reasoner, by following design patterns which mini-
mize knowledge redundancy and maximize inference ef-
ficiency.

5. EVALUATION

SecSSy was evaluated on a Xilinx ZC702 board targeting
a dual ARM Cortex-A9 running at 600MHz. In spite of
using a multicore hardware architecture, the current im-
plementation only supports a single-core configuration.
We focus our evaluation on memory footprint and per-
formance overhead. We also evaluate the current level of
compliance towards the MISRA C++ coding guidelines.

5.1. Memory footprint

To assess memory footprint results, we used the size tool
of ARM Xilinx Toolchain. Table 1 presents the collected
measurements for both RTZVisor and SecSSy when com-
piled with the lowest (-O0) and highest (-O3) level of
optimization. Boot code and drivers were not take into
consideration. As it can be seen, for -O3, the memory
overhead introduced by the SecSSy C++ implementation
is only of about 20 % (1.5 KB) when compared with the
C implementation. In fact, both implementations show
a very minimal TCB of about 7.2 KB and 8.7 KB for
RTZVisor and SecSSy, respectively. The main reasons
behind this low memory footprint are (i) the hardware
support of TrustZone technology for virtualization and
(ii) the careful design and static configuration of each
hypervisor component. It is also worth mentioning that

Table 1. Memory footprint results (bytes)

.text .data .bss Total
RTZVisor (-O0) 11808 196 8 12012
RTZVisor (-O3) 7072 196 4 7272
SecSSy (-O0) 16372 28 1472 17872
SecSSy (-O3) 7276 12 1472 8760
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Figure 5. Thread-Metric Benchmark results: relative per-
formance.

the size of SecSSy’s TCB is not likely to increase signif-
icantly in the future, since new services and drivers will
be added as secure world tasks.

5.2. Performance

The Thread-Metric Benchmark Suite consists of a set
of benchmarks specific to evaluate real-time operating
systems (RTOSes) performance. The suite comprises
7 benchmarks. For each benchmark the score repre-
sents the RTOS impact on the running application, where
higher scores correspond to a smaller impact.

RTZVisor and SecSSy were configured with a 10 mil-
liseconds guest switching rate. Caches and MMU support
for guest OS partitions were enabled, which means MMU
and caches maintenance operations were needed at each
guest switch. Both systems were set to run one single
guest partition, and the hypervisor scheduler was forced
to reschedule the same guest, so that results can translate
the full overhead of the complete guest-switching oper-
ation. We ran benchmarks in the native version of RO-
DOS and compared them against the virtualized versions
in RTZVisor and SecSSy for the two compilation opti-
mization scenarios (-O0 and -O3). Figure 5 presents the
achieved results, corresponding to the normalized values
of an average of 100 collected samples for each bench-
mark. From the experiments it is clear that the virtu-
alized versions of RODOS only present a small perfor-
mance degradation when compared with its native execu-
tion. For -O3 optimization, the performance degredation
for RTZVisor is about 2% while for SecSSy it is about
3%. Hence, we can conclude that the C++ does not bring
a high performance penalty, specially when exploiting
compiler optimizations.

5.3. MISRA C++ Compliance

To evaluate the evolution of the level of MISRA C++
compliance, we compared the state of the project from



when we first ported the hypervisor to C++ to the cur-
rent state of the implementation, after correcting many of
the violations reported by the static analyzer. For this we
use the PRQA rule compliance reports generated by the
QA-C++ tool.

The total count of rule violations decreased from 1151 to
273, while the total number of compliant rules increased
from 160 to 196 (out of 219 enforced rules). This is re-
flected by the principal metric given by the compliance
report, the total project compliance index, which shows
an increase from 73% to 90%. The real value of the in-
dex is further increased by the number of deviations that
are documented. Deviations are intentional and explicit
non-adherence to rules justified by some specific reasons.
Also, we believe that some of the rule violations reported
by the tool are false positives. We are working together
with PRQA to confirm and work around these issues.

The largest number of violated rules appertains to group
5, which concerns rules related to expressions. Since Sec-
SSy originates from a C implementation, a considerable
number of violations originate from type conversions in
expressions which are not yet completely resolved. We
expect to achieve a much higher degree of compliance in
the near future by analyzing and correcting them.

6. ONGOING WORK

At the moment of writing of this paper, SecSSy is still
being extended to provide a higher degree of design flex-
ibility, performance and security.

The capability-based access control mechanism is being
extended beyond IPC ports to a wide range of kernel ob-
jects. Such extension includes objects to control hard-
ware resources such as interrupts, memory or devices.
This is essential to assign resources to secure tasks. For
example, an interrupt can be easily assigned to a guest
partition by configuring it as non-secure interrupt source
when the guest executes. The guest then accesses the GIC
to configure the interrupt. It will receive it through its
interrupt vector as it expects. However, tasks cannot di-
rectly access the GIC nor receive interrupts. By assigning
an interrupt capability to a task (e.g., a driver), it can then
invoke the object operations to configure the interrupt and
assign it one of its ports which receives a message when
the interrupt is triggered.

Furthermore, a mechanism that allows the sharing of ca-
pabilities is being developed. Partitions will be able to
grant capabilities with modified access rights to other
partitions [21]. These granted capabilities can later be
revoked. This mechanism is useful for implementing
shared memory, where partitions share capabilities for
their memory segments, which the receiver can use to
ask the core to map to their own address space. Us-
ing this sharing mechanism a performance boost is ob-
tained for data processing service provision. Guest par-
titions can share the segment containing the data to be

processed with a service (e.g., encryption/decryption ser-
vice), which can then operate directly on the data, elim-
inating the needed to transport the data via normal IPC
message passing. When the task is done, it signals
the client partition, which revokes the capability for the
memory region.

Software attacks often sabotage the legal control flow or
critical data in a vulnerable program. Using unsafe lan-
guages (e.g., C and C++), attackers exploit memory re-
lated errors (e.g., buffer overflows) to write data to unin-
tended locations. The expressiveness of an attack varies
from executing newly injected code to not changing pro-
gram’s control-flow at all. Control flow integrity (CFI)
[22] is being implemented using a software shadow stack,
which records every address of every branch operation
for function calls and returns. The collected data is then
compared to a control-flow graph to detect illegal branch
addresses, in a separate core. SecSSy’s code is absent
of indirect branch instructions, so this CFI implementa-
tion mostly tries to detect stack corruption attacks on the
function’s return address through comparison. While CFI
tackles control related attacks to a certain extent, i.e. only
works at function call/return granularity, the hypervisor’s
data plane must also be secured. Data integrity (DI) is
a technique which identifies store operations to critical
static variables and logs written values using instrumen-
tation. Logged values are then tested against rules pro-
vided by the developer, also in a separate core. The de-
veloper must identify variables whose value affect hyper-
visor’s normal behavior and what conditions must be met
to attest their validity. CFI and DI must be implemented
together in order to secure both data and control-planes
of SecSSy. Both techniques will use a separate core to
perform their respective security operations, minimizing
performance penalties. To communicate between the two
cores, several circular buffers are used by both CFI and
DI to log relevant data for parallel processing. The in-
strumentation, inserted using GNU GCC compiler plu-
gin API, writes all relevant data to these data structures
while the respective security application reads and pro-
cesses them. The existing MMU ensures read-only per-
missions for these data structures to avoid log tampering,
only allowing write operations when logs must be per-
formed in the hypervisor’s code. W ⊕ E (write xor exe-
cute) security feature also avoids attacks trying to subvert
instrumentation purposes.

7. CONCLUSION

Aerospace industry is evolving at a frenetic rate. The
upward trend for interconnectivity has demonstrated se-
curity vulnerabilities can impact the safe operation of
such systems, and that an urgent change in the mindset is
needed: safety and security can no longer be siloed func-
tions - they must be aligned. To address this problematic
we proposed SecSSy as a hardware-assisted virtualiza-
tion solution which addresses safety and security at sev-
eral stages of system development. The performed ex-
periments demonstrate security countermeasures do not



have impact on the operation of the system. To the best
of our knowledge, SecSSy is the first hypervisor offering
such a complete security-safety synergy.

Current research aims at porting SecSSy for other plat-
forms, as well as supporting other RTOSes as guest OSes.
We are also currently implementing support for asymmet-
ric multiprocessing (AMP), but we plan to explore other
multicore configurations. Work in the near future will fo-
cus on an extensive and exhaustive evaluation of real-time
aspects with short-term and long-term tests. Extension of
SecSSy for new generation Cortex-M platforms is also at
the top of our priorities, but we still need to wait until the
release of the first ARMv8-M boards.
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