Towards a Lightweight Embedded Virtualization
Architecture Exploiting ARM TrustZone

S. Pinto, D. Oliveira, J. Pereira, N. Cardoso, M. Ekpanyapong, J. Cabral and A. Tavares
Centro Algoritmi - University of Minho
{sandro.pinto, d.oliveira, j.pereira, nuno.cardoso, jorge.cabral, adriano.tavares } @algoritmi.uminho.pt, mongkol @ait.ac.th

Abstract—Virtualization has been used as the de facto technol-
ogy to allow multiple operating systems (virtual machines) to run
on top of the same hardware platform. In the embedded systems
domain, virtualization research has focused on the coexistence
of real-time requirements with non-real-time characteristics.
However, existent standard software-based virtualization solu-
tions have been shown to negatively impact the overall system,
especially in performance, memory footprint and determinism.

This work in progress paper presents the implementation
of an embedded virtualization architecture through commodity
hardware. ARM TrustZone technology is exploited to implement
a lightweight virtualization solution with low overhead and high
determinism, corroborated by promising preliminary results.
Research roadmap is also pointed and discussed.

Index Terms—Virtualization, TrustZone, Monitor, Real-Time
Embedded Systems, ARM.

I. INTRODUCTION

Virtualization technology enables concurrent execution of
multiple VMs (Virtual Machines) on the same hardware
(single or multicore) processor, allowing the co-existence
of multiple OSes (Operating Systems) environments on a
single physical platform [1]. Traditionally, it has been used in
enterprise and cloud computing space (server environments)
to maximize resource usage and availability [2], and, over
the last few years, this technology reached the embedded
systems field [3], [4]. With the emergent complexity of modern
embedded devices, which increasingly ask for general purpose
computing characteristics while still constrained by real-time
requirements, embedded virtualization has emerged as a solu-
tion to address the aforementioned concerns.

Typical existent embedded virtualization solutions [5],
[6], [7], [8] follow essentially two different implementa-
tions: full-virtualization and paravirtualization [9]. With full-
virtualization, guest OSes are supported without any modifi-
cation. The hypervisor or VMM (Virtual Machine Monitor)
needs to trap and emulate privileged instructions, which leads
to a significant performance degradation. Oppositely, with par-
avirtualization, the guest OS is modified to include specialized
system calls (hypercalls) into the kernel, that enables it to
request services directly from the hypervisor. With this static
approach, the execution performance increases significantly,
but the engineering and maintenance effort associated with
custom modifications lead to lower productivity and longer
time-to-market.

More recently, taking in mind the rigid constraints (e.g.,
performance, memory, power, safety, security) of the embed-

ded domain, research has focused on the development of effi-
cient embedded virtualization solutions, leveraging hardware
assistance for virtualization [10], [11]. Intel, ARM and AMD
Virtualization Technologies, altogether with ARM TrustZone
and Intel TxT (Trusted Execution Technology) are examples
of existent technologies that can be exploited to implement
efficient and secure embedded virtualization solutions. Driven
by the ubiquitous presence of ARM-devices in the embedded
market as well as the supremacy of ARM TrustZone-based
SoCs (System-on-a-Chip) to ARM SoCs with Virtualization
Extensions, our work and research is focusing on the explo-
ration of the first mentioned technology.

This work in progress paper presents an implementation
of a TrustZone-based virtualization architecture, which allows
the execution of a GPOS (General Purpose Operating System)
- Linux - side by side with a RTOS (Real-Time Operating
System) - FreeRTOS. Since the presented implementation is
assisted by commodity hardware, performance overhead and
memory footprint are small. Preliminary results corroborate
the viability of the presented implementation.

II. ARM TRUSTZONE OVERVIEW

TrustZone technology [12] refers to security extensions
implemented by ARM in modern applications processor cores,
including the ARM1176, Cortex-AS5/A7/A8/A9/A15, and the
newest 64-bit Cortex-A53/A57. This hardware security exten-
sions virtualizes a physical core as two virtual cores, providing
two completely separated execution domains: the secure world
for the security subsystem and the non-secure world for
everything else. The state of the processor can be changed
by enabling or disabling the NS (Non-Secure) bit of the SCR
(Secure Configuration Register), exposed through coprocessor
(CP15) interface [13].

To switch the processor between the secure and the non-
secure world, a special new secure processor mode, called
monitor mode, was introduced. The monitor mode is com-
pletely different from other supported modes, because inde-
pendently of the state of NS bit, when the processor runs in
this mode the state is always considered secure. To enter the
monitor mode, a new privileged instruction was also specified
- SMC (Secure Monitor Call). Furthermore, some exceptions
sources, as interrupts, can be also configured to be handled
in monitor mode upon triggering. This forces the processor
to enter monitor mode without using the dedicated privileged
instruction. The template of the monitor code is defined by the



developer, but it generally saves the state of the current world
and restores the state of the world being switched to.

At the hardware-level, TrustZone is more than extensions
build into the core to ensure a strong isolation between the
two worlds. Additional secure components are also built-in
the SoC, such as a secure boot ROM (Read-Only Memory)
to configure the system, a secure RAM (Random-Access
Memory) used to store and run trusted code (e.g. Digital
Rights Management engines and payment agents), or a secure
non-volatile or one-time programmable memory for storing
master keys [14]. Apart of all of these secure extensions, the
AXI (Advanced eXtensible Interface) system bus carries extra
control signals to restrict access to the read and write channels
on the main system bus. This feature enables the possibility of
the TrustZone architecture to secure peripherals (e.g. interrupt
controllers, timers, and user I/O devices).

III. TRUSTZONE-BASED VIRTUALIZATION
ARCHITECTURE

The idea of using TrustZone as a virtualization technique
in embedded systems was first introduced by Frenzel et al.
[15]. They discovered that TrustZone provides a specialized,
hardware-based form of system virtualization, especially in
the case of two VMs. Since the number of VMs corresponds
exactly with the number of isolated states supported by the
processor, a rich or multimedia operating system (e.g. Linux,
Android) could run in non-secure world, while safety/security-
critical software could run in the secure world. Since the
monitor mode has full view of the processor, using that
mode to implement the VMM removes the need to modify
the OS hosted on the non-secure side. Despite running in
privileged mode, GPOS continues being less privileged than
VMM component, since it can not access the state of the se-
cure side. Besides, TrustZone also decreases the performance
overhead, eliminating one of its most important sources -
privilege instruction emulation -, and speeding up the context
switch between VMs. To achieve the latter, the architecture
is endowed by an extensive number of banked processor and
Coprocessor registers.

A. Architecture Description

Fig.1 depicts the TrustZone-based embedded virtualization
architecture. As it can be seen, there are three main software
components: the RTOS (FreeRTOS); the GPOS (Linux); and
the Virtual Machine Monitor (VMM). The GPOS, running in
the normal world, provides a rich and flexible environment,
useful for running man-machine interfaces as well as internet-
based applications and services. On the other hand, the RTOS,
running in the secure world, provides a real-time environment
essential for the development of applications which need to
guarantee specific deadlines. Finally, the VMM component,
running also in the secure world but in monitor mode, is
responsible for managing the Virtual Machine Control Block
(VMCB) of each VM. When a VM can be executed by the
physical processor, the VMM saves the current state of the

Guest 0S 1 (VM 1) Guest OS 2 (VM 2)

(Normal World) (Secure World)
User Mode User Mode
V Privileged Mode Privileged Mode

Virtual Machi
Monitor

RTOS
(FreeRTOS)

Monitor
Mode

ARM TrustZone-based SoC

Fig. 1: Embedded Virtualization Architecture

virtual processor on the corresponding VMCB, and restores
the VMCB of the other VM on the physical processor.

B. Execution Flow

The system starts on the secure side with the start-up
routine. This routine is responsible for a set of operations
which includes registers initialization as well as stacks, mem-
ory, peripherals and interrupt controller configuration; e.g., an
amount of memory is configured as secure and another as
non-secure. The GIC (Generic Interrupt Controller) is also
configured to route fast interrupt requests (FIQ) to secure
world, and interrupt requests (IRQ) for non-secure world
(Fig.2). On the SCR register the FIQ and IRQ bits are disabled
to guarantee that FIQ/IRQ exceptions do not cause a switch
to monitor mode, and consequently the VM switch is only
performed through SMC instruction.

After the boot process, the RTOS - FreeRTOS in our
implementation - starts scheduling its own tasks. When all
the real-time tasks are blocked and/or suspended, the idle
task performs a system call that is responsible for explicitly
invoking the VMM, executing the SMC instruction (Fig.2).
Immediately, the processor changes to the monitor mode and
starts executing the VMM, jumping to the specific handler of
the monitor vector table. Hence, the processor execution is
routed to the SMC handler which prepares the transition to
the non-secure world.

The next step performs the context-switch operation. Con-
cretely, the processor state of the secure side (FreeRTOS) is
saved in its own VMCB, and the VMCB of the non-secure
side (Linux) is restored. An exception to this is in the very
beginning (i.e., first time execution) when due to optimization
purpose, only the processor state of the secure side is saved,
the supervisor mode (SVC) is set, and the linker register is
updated with the start address of the GPOS kernel. At the
end, the VMM enables the FIQ and NS bits of SCR register
and jumps to the initialized/restored non-secure world address.

As it can be noticed, until this moment no operation on
cache was performed. In fact, TrustZone permits that cache



Guest 0S 1 (VM 1)
(Normal World)

Guest 0S 2 (VM 2)
(Secure World)

(FreeRTOS) |

SMC
FIQ

Virtual Machine Monitor
Monitor Mode

Fig. 2: Execution flow diagram

entries of the secure world and the normal world co-exist
together. TrustZone support in the cache controller specifies
that a NS tag bit is attached to all data in the cache or in
buffers. This support removes the need for a cache flush when
switching between VMs, and contributes to a faster context-
switch.

On the non-secure side, the GPOS will run until the moment
that a FIQ is triggered (Fig.2). Since the FIQ bit had been
previously enabled in SCR register, the arrival of a FIQ request
brings the processor into monitor mode, jumping to the FIQ
handler of the monitor vector table. At this moment, the VMM
begins executing and prepares the context-switch operation. It
starts by disabling the FIQ and NS bits of SCR register, saves
the full processor state view of the non-secure side into its
VMCB, acknowledges the FIQ request and restores the secure
side context from the VMCB.

At this point, the processor returns to the RTOS kernel,
which will start dispatching tasks again. The processor will
stay in the secure world until the moment that the idle task
is re-scheduled. When it happens, the processor performs all
previously described steps again.

IV. PRELIMINARY RESULTS

The implemented virtualization architecture was tested on
a Xilinx ZC702 board with a dual ARM Cortex-A9 running
at 800MHz. In spite of using a multicore hardware architec-
ture, our current implementation only supports a single-core
configuration. Performance results were obtained by exploiting
the PMU (Performance Monitoring Unit) component. Memory
footprint results were collected using the size tool of ARM
Xilinx toolchain.

In order to assess the overhead introduced by our VMM im-
plementation, two context switch operations were performed.
The selected scenarios encompass:

1) Switch to non-secure world - The VMM performs the
context switch operation from the secure to the non-
secure world, giving control to the Linux kernel. The
number of clock cycles is measured from the exact
moment of the SMC instruction on the secure side until
the instant that the processor reaches the address of the
non-secure side;

2) Switch to secure world - The VMM performs the context
switch operation from the non-secure to the secure

TABLE I: VMM performance statistics
Execution Time (clock cycles)

min max w o
Switch to NS world 2431 2568 2478 52.5
Switch to S world 2081 2245 2109 48.9

TABLE II: VMM memory statistics

text .data .bss Total

VMM 848 0 244 1092

FreeRTOS 17674 16 66000 83690
Linux 2874978 52 4120 2879150

world, giving control to the FreeRTOS kernel. The
number of clock cycles is measured from the exact
moment of the FIQ exception on the non-secure side
until the instant that the processor reaches the kernel
running on the secure side.

Each test was repeated twenty times, and the results report
the minimum (min), maximum (max) and mean () value
as well as the standard deviation (o) of the collected mea-
surements. Despite executing the same number of instructions
by the VMM in each iteration, the number of clock cycles
needed to execute the instructions varies due to the presence of
dynamic architectural features (e.g., write buffer and caches)
in the Cortex-A9 processor.

Table I presents the performance overhead introduced by
the VMM. Considering that the clock frequency of the used
processor is 800MHz, this corresponds to an average execution
time of 3.10us and 2.64us to perform a full switch between
secure to non-secure and non-secure to secure worlds, respec-
tively. Considering that the measured average time necessary
to perform a task switch in the FreeRTOS was 2.02us, the
VM context-switch only has an average overhead of 30.6%
and 53.4% relatively to the FreeRTOS task context-switch.
Furthermore, as was previously explained, the VMM runs with
all interrupt sources disabled, thus the worst case scenario
happens when a FIQ request arrives when a secure to non-
secure context switch is starting. In this case, the request is
handled only after two complete world switches, which repre-
sents a worst case interrupt latency of 6.02us. Since the latency
introduced by the VMM on the FIQ request handling has a
deterministic upper bound - limiting the variance introduced
by dynamic architectural features -, it can be taken into account
when designing the real-time system.

Table II displays the memory footprint (bytes) of each
software component of the implemented architecture. As it
can be seen, the memory overhead introduced by the VMM
is substantially small than the RTOS. Concretely, the total
amount of memory required by the VMM is approximately
1.30% and 0.04% of the total amount of memory required
by the FreeRTOS kernel and the Linux kernel (uncompressed
vmlinux), respectively.

V. RESEARCH ROADMAP

Work in the near future will focus on the extension of the
current architecture to deal with shared devices (I/0). At this



stage, each peripheral is dedicated to one world. So, each
device is marked as secure or non-secure (hardware bit), and
accessed only by the respective VM. However, the idea is to
abolish this limitation and integrate a new shared device access
mechanism in the current architecture. Shared peripherals will
be considered always secure, and accesses by the GPOS will
be monitored by the VMM. Since the RTOS is running on the
secure side, it has direct and privileged access.

After, research will investigate TrustZone’s ability to sup-
port an arbitrary number of VMs. In the current implemen-
tation the number of VM coincides exactly with the number
of isolated states supported by the processor. Consequently,
the VMM was fitted to explore this correlation between the
number of VM and the number of virtual processors supported
inherently by the processor architecture. Hence, the idea is to
extend the current architecture, implementing a more generic
and sophisticated VMM. Thus, it will be possible to manage
more than two VMs. The subsequent step will encompass a
multicore approach. After expanding the virtualization archi-
tecture for multi-guest support, it will also be redesigned for
multicore support. Investigation will focus on symmetric mul-
tiprocessing (SMP) and the necessary changes which should
be introduced on the extended virtualization architecture.

From a different perspective, research will continue towards
the development of a TEE [16]. The current architecture will
be slightly modified, to target critical applications that deal
with sensitive information, as secure payments or content
protected by Digital Rights Management. Adopting a service-
client methodology, FreeRTOS will work as a secure OS
that provides secure services for client applications running
on the Linux side. TrustZone API (Application Programming
Interface) will be implemented as a standard communication
mechanism between both OSes. At the end, the TEE will be
consolidated with the extended VMM, creating a complete
framework targeting safety and security requirements. In this
way it will be possible to provide an adaptable one-size-fits-
all runtime environment for critical/secure applications by one
side, and allow the consolidation of multiple OSes by the other
side.

VI. CONCLUSION

On the last few years, the interest in solutions that use
virtualization technology to consolidate multiple workloads
has been increased, especially on the embedded systems field.
Embedded Industrial applications, for example, need to guar-
antee the deadlines of real-time tasks, while at the same time,
integrating rich environments for monitoring and network
purposes. However, existent pure software-based virtualization
solutions introduce significant performance and memory over-
head or require significant engineering and maintenance effort.

This paper presented a work in progress towards the imple-
mentation of a TrustZone-based virtualization architecture. Ex-
ploiting ARM commodity hardware technology, a lightweight
virtualization architecture was implemented on a commercial
Xilinx ZC702 board, showing how a GPOS (Linux) can coex-
ist with a RTOS (FreeRTOS) with low performance overhead

and memory footprint. As demonstrated by preliminary results,
the performance and memory overhead introduced by the
VMM are very small. Concretely, the measured VM context-
switch overhead was 3.10us to switch from the RTOS to the
GPOS, and 2.64us to the reverse situation. The measured
memory footprint was about l1kbyte.

The research roadmap section described that research in
the near future will focus on the development of a new
shared device access mechanism, and the extension of the
current architecture for multi-guest and multicore support.
Research will then proceed towards the development of a
trusted execution environment and its consolidation with the
virtualization architecture.

VII. ACKNOWLEDGEMENTS

This work is supported by FEDER through COMPETE
and national funds through FCT Foundation for Science and
Technology in the framework of the project FCOMP-01-0124-
FEDER-022674.

REFERENCES

[1] M. Rosenblum and T. Garfinkel, “Virtual Machine Monitors: Current
Technology and Future Trends,” IEEE Computer Society, vol. 38, no.
May, pp. 3947, 2005.

[2] S. Muthunagai, C. Karthic, and S. Sujatha, “Efficient access of Cloud
Resources through virtualization techniques,” 2012 International Con-
ference on Recent Trends in Information Technology, pp. 174-178, Apr.
2012.

[3] G. Heiser, “The role of virtualization in embedded systems,” Proceed-
ings of the Ist workshop on Isolation and integration in embedded
systems - IIES "08, pp. 11-16, 2008.

, “Virtualizing embedded systems-why bother?”” Proceedings of the

48th Design Automation Conference (DAC), pp. 901-905, 2011.

[5] M. Masmano, I. Ripoll, A. Crespo, and J. Metge, ‘“Xtratum: a hypervisor
for safety critical embedded systems,” Proceedings of the 11th Real-Time
Linux Workshop, 2009.

[6] U. Steinberg and B. Kauer, “NOVA: a microhypervisor-based secure
virtualization architecture,” Proceedings of the 5th European conference
on Computer systems, pp. 209-222, 2010.

[7]1 D. Rossier, “EmbeddedXEN: A Revisited Architecture of the XEN hy-
pervisor to support ARM-based embedded virtualization,” White Paper,
2012.

[8] A. Tavares, A. Didimo, T. Lobo, P. Cardoso, J. Cabral, and S. Mon-
tenegro, “RodosvisorAn ARINC 653 quasi-compliant hypervisor: CPU,
memory and I/O virtualization,” IEEE 17th Conference on Emerging
Technologies & Factory Automation (ETFA), 2012.

[9] VMware, “Understanding Full Virtualization, Paravirtualization, and
Hardware Assist,” White Paper, pp. 1-14, 2007.

[10] P. Varanasi and G. Heiser, “Hardware-supported virtualization on ARM,”
Proceedings of the Second Asia-Pacific Workshop on Systems, 2011.

[11] A. Aguiar and C. Moratelli, “Hardware-assisted virtualization targeting
MIPS-based SoCs,” 23rd IEEE International Symposium on Rapid
System Prototyping (RSP), pp. 2-8, 2012.

[12] ARM, “ARM Security Technology - Building a Secure System using
TrustZone Technology,” Tech. Rep., 2009.

, “ARM Architecture Reference Manual - ARMv7-A and ARMv7-
R edition,” DDI 0406C.b, 2012.

[14] T. Alves and D. Felton, “TrustZone: Integrated hardware and software
security,” ARM white paper, vol. 3, no. 4, pp. 18-24, 2004.

[15] T. Frenzel, A. Lackorzynski, A. Warg, and H. Hartig, “ARM TrustZone
as a Virtualization Technique in Embedded Systems,” Twelfth Real-Time
Linux Workshop, 2010.

[16] G. Platform, “The Trusted Execution Environment: Delivering Enhanced
Security at a Lower Cost to the Mobile Market,” Global Platform white
paper, pp. 1-26, 2011.

[4]

[13]



