
FreeTEE: when real-time and security meet
S. Pinto, D. Oliveira, J. Pereira, J. Cabral, A. Tavares

Centro Algoritmi - University of Minho
{sandro.pinto, daniel.oliveira, jorge.pereira, jorge.cabral, adriano.tavares}@algoritmi.uminho.pt

Abstract—The pervasive use of embedded computing systems
in modern societies altogether with the industry trend towards
consolidating workloads, openness and interconnectedness, have
raised security, safety, and real-time concerns. Virtualization has
been used as an enabler for safety and security, but research
works have proven that it must be extended and improved with
hardware-based security foundations. ARM Trustzone has been
used for the realization of Trusted Environments, however in this
case real-time requirements are completely disregarded.

This work in progress paper presents FreeTEE, an embedded
architecture that emphasizes and preserves the real-time prop-
erties of the system but still guarantees security from the outset.
TrustZone technology is exploited to implement the basic building
blocks of a Trusted Execution Environment (TEE) as a lower-
priority thread of a RTOS. Preliminary results demonstrated that
the real-time properties of the RTOS remain practically intact.

Index Terms—TrustZone, Real-time, Security, TEE, Monitor,
FreeRTOS, ARM.

I. INTRODUCTION

Embedded systems are widespread in modern societies
and are present in a huge part of our key infrastructures.
Driven by cost reduction, time to market pressure and design
flexibility, the trend nowadays is towards the consolidation
of a wide range of functions into a single intelligent unit [1].
Such consolidation of workloads altogether with the explosion
on connectivity leveraged an increasingly connected world
where internet-based services penetrated traditional application
domains, creating a much larger attack surface area [2].
Obviously, this trend raised security, safety, and real-time (RT)
concerns, since embedded systems were not designed to deal
with this level of interconnectedness [3] and coexistence.

Virtualization technology has been used as an enabler for
safety and security in embedded systems [4], [5], leveraging
workloads separation in secure partitions to increase system
reliability and stability. However, virtualization, per-si, is not
enough to provide the desired security level (i.e., it provides
to some extent system integrity but no confidentiality) [6]
and it must be extended with new security-oriented tech-
nologies which promote hardware as the initial root of trust.
ARM Trustzone [7] and Intel TXT (Intel Trusted Execution
Technology) are examples of existing hardware-based security
foundations which have been exploited to design trustable and
safe embedded devices from the outset [8], [9].

ARM TrustZone, in turn, has been gaining particular atten-
tion not only due to the massive presence of ARM processors
in the market (nearly 95% of the world’s mobile handsets),
but also because GlobalPlatform standardized the concept of

a Trusted Execution Environment. The principle behind a
TEE is to provide an execution environment which is isolated
from the rich execution environment (REE), separating all the
security operations, which need to be protected, in a special
OS which is isolated from the rich OS. The applicability of this
technology ranges from mobile wallets and NFC payments, to
premium contact protection, Bring your Own Device (BYOD)
and Digital Rights Management (DRM). Being completely
devoted to security requirements, TEE specification does not
contemplate RT properties on the secure OS. Many approaches
have been proposed [8], [9], [10], [11], [12], [13], but no
one provides a one-size-fits-all solution. Some of them only
exploit TrustZone for virtualization [9], [10], while others or
implement a TEE [8] or only extend the TEE architecture with
more security features [12], [13].

This work in progress paper goes beyond state-of-the-art
presenting a TrustZone-based architecture that implements the
basic building blocks of a TEE as a lower-priority thread of
a RTOS. FreeRTOS was slightly modified to support secure
services as lower priority tasks, and also to schedule the
REE only in the idle periods (asymmetrically). A specific
monitor layer was developed to mediate the execution of
both OSes. The TrustZone API client library as well as the
TrustZone kernel module were also implemented. Preliminary
results corroborate our predictions, demonstrating that the RT
properties of the system remain practically intact.

II. ARM TRUSTZONE

TrustZone technology [7] refers to security extensions
implemented by ARM since the ARMv6 architecture. This
hardware security extensions provide a secure and separate
execution environment that protects the integrity and confiden-
tiality of secure-sensitive processing, by splitting the hardware
and software resources into two worlds - the secure world and
the normal world.

A. TrustZone Hardware

The TrustZone hardware architecture can be seen as a dual-
virtual system, which splits all the system’s physical resources
into two possible virtual environments. The major changes
introduced in the hardware architecture include the ability to
tag system resources as belonging to the secure or normal
world. The new 33rd processor bit - the NS (Non-Secure) bit
-, indicates in which world the processor is currently executing,
and is propagated over the memory and peripherals buses. To
preserve the processor state during the world switch, Trust-
Zone adds an extra processor mode: the monitor mode. When978-1-4673-7929-8/15/$31.00 c© 2015 IEEE

running in monitor mode, the processor state is considered
always secure. Since the processor only runs in one world at
a time, software stacks in both worlds can be bridged via a
new privileged instruction - SMC (Secure Monitor Call). The
monitor mode can also be entered by configuring it to handle
interrupts and exceptions in the secure side.

The memory infrastructure outside the core can be also
partitioned into the two worlds through the TrustZone Address
Space Controller (TZASC). DRAM can be partitioned into
distinct memory regions, each of which can be configured to be
used in either world or both. The processor also provides two
virtual Memory Management Units (MMUs), and isolation is
still available at the cache-level. System peripherals can be
also configured as secure or non-secure through the TrustZone
Protection Controller (TZPC).

B. TrustZone API

The TrustZone API (TZAPI) [14] is an application API
which specifies how normal applications running on the rich
OS interact with the isolated execution environment. Basically,
following a client-server model, the API defines a set of
abstract software interfaces by which non-secure client appli-
cations (NSCApps) can interact with the secure services. The
API allows clients to send commands and requests to a secure
service, and exchange data between both worlds. Secondary
features of the API allow, for example, to query the properties
of installed services as well as download new security services
at run-time. The (publicly available) TrustZone API does not
include any specification about how to develop applications
running inside the isolated execution environment. Hence,
while it could be useful for application developers, by itself it
does not fully specify the APIs needed for developing secure
services.

III. FREETEE

Fig.1 depicts the FreeTEE architecture. As can be seen,
the software components are distributed between both worlds.
Adopting a bottom-up description, the software running in
the secure world is composed by the Monitor layer, the T-
RTOS and its corresponding RT and secure service tasks. The
monitor component, running in monitor mode, works as a
gatekeeper and is responsible for managing the World Control
Block (WCB) on each world switch. The T-RTOS, running
in kernel mode, is the RT environment with extended secure
capabilities which allows not only the development of RT tasks
but also secure services. The software running in the normal
world, in turn, consists of a GPOS with the respective TZAPI-
dependent software (i.e., the privileged TZ kernel module and
the unprivileged TZAPI library) and the NSCApps.

A. Secure World Software

The system starts booting on the secure world side by
performing a set of operations which includes registers and
stacks initialization, memory, peripherals and interrupt con-
troller configuration, as well as GPOS image loading. Memory
and peripherals are configured as secure or non-secure, and

Fig. 1: FreeTEE Architecture

the latter are configured to trigger interrupts (i.e., FIQs and
IRQs for secure and non-secure peripherals, respectively). The
GIC (Generic Interrupt Controller) is set to route fast interrupt
requests (FIQ) to secure world, and interrupt requests (IRQ)
for normal world. IRQs are masked during the secure world
execution, and the ability of the normal world to manage the
configuration of fast interrupts is disabled. Once the system
boot finishes, the execution control is transferred to the T-
FreeRTOS which will only invoke the Monitor on its idle
periods.

1) T-FreeRTOS: T-FreeRTOS is the modified version of
FreeRTOS with extended secure capabilities. The main modi-
fications on the kernel side encompass: (i) the implementation
of the ”idle scheduling”; (ii) the increasing number of system
calls; and (iii) the support for the TZAPI communication.
First, in order to preserve the RT properties of the system,
the idle task was modified to implement what is called an
”idle scheduling”: the RTOS has a greater scheduling priority
than the GPOS, and consequently the GPOS is only scheduled
during the idle periods of the RTOS. This is achieved by
disabling the FIQ and IRQ bits on the SCR register, ensuring
that FIQ/IRQ exceptions do not trigger a switch to monitor
mode, and consequently the world switch is only performed
through a specific system call (SMC). Obviously, the number
of system calls was also extended: since the idle task as
well as secure services run in user mode, requesting new
kernel services dictates new specific system calls. Last but
not least, a new small kernel module for managing the TZAPI
communication was also implemented: it is responsible for in-
terpreting the commands/data received from the NSCApps and

acting accordingly to the desired operation. If the requested
action has to be handle by the secure services, the request is
transferred to the user space.

2) Monitor: The Monitor component, although running in a
higher level of privilege (monitor mode) than T-FreeRTOS, is
configured to behave in a passive way so that T-FreeRTOS
has the processor as long as RT tasks are ready-to-run.
Hence, from the secure side, the Monitor will be dispatched
only when T-FreeRTOS is idle or returning from a secure
service, by invoking specific system calls that will trigger a
SMC instruction. On the other hand, once the GPOS starts
executing, the Monitor will be invoked through the specific
SMC instruction (i.e., through TZ kernel module) as well as
later when a FIQ is triggered (e.g., T-RTOS systick). In all
situations, the monitor will perform a world switch operation
that saves the state of the current world in its own WCB,
and restores the WCB of the ready-to-run world. Due to
the intrinsic TrustZone hardware capabilities in banking an
extensive list of processor and coprocessor registers, the WCB
of each world is minimal and composed only by 28 registers.

B. Normal World Software

The normal world software provides the foundation for
application developers to design and implement standard
NSCApps that interact with secure services. The GPOS pro-
vides a rich and flexible environment by which NSCApps,
following the TZAPI specification (TZAPI library), interact
with the secure services through the TZAPI kernel module.

1) TZAPI-Client Library: The TZAPI-client library ex-
poses the standardized API defined by TZ specification,
abstracting the application developer from the specifici-
ties of the TZ message formats and the TZ kernel mod-
ule Input/Output Control (IOCTL) calls. We implemented
all the specification, which includes the descriptors (e.g.,
tz_device_t, tz_session_t), control functions (e.g.,
TZDeviceOpen, TZDeviceClose, TZOperationPerform),
encoder and decoder functions (e.g., TZEncodeUin32,
TZDecodeArraySpace), service manager functions (e.g.,
TZManagerOpen) and asynchronous operations, with the ex-
ception of functions related to the run-time download and
removal of services.

2) TZAPI Kernel Module: The TZ kernel module imple-
mented for the GPOS (Linux) provides a pseudo-character
device that implements a logical communication channel (be-
tween the normal world and the secure world) on top of the
real communication channel, and provides the functional foun-
dation to implement the normal world TZAPI library. It pro-
vides a set of specific IOCTLs that semantically understands
parameters, allocates memory buffers, encodes and decodes
data, prepares the requests and establishes the communication
(through SMC instruction). Among implemented IOCTLs,
TZ_IOCTL_SES_OPEN_REQ and TZ_IOCTL_ENC_UINT32, for
example, are invoked when the API TZOperationPerform

for opening a session and the API TZEncodeUint32 for
encoding message is called, respectively.

FreeRTOS FreeTEE

Thread Metrics µ µ ov. (%)

Cooperative Context Switch 141629101 141629105 +0.0000028
Preemptive Context Switch 45284714 45284718 +0.0000077

Interrupt Processing 73019547 73019549 +0.0000021
Interrupt Preemption 36449742 36449745 +0.0000069

Message Passing 75779528 75779528 +0.0000000
Semaphore Processing 102329325 102329329 +0.0000039
Memory Alloc/Dealloc 83009493 83009493 +0.0000000

TABLE I: Thread Metrics Benchmark Results

IV. PRELIMINARY RESULTS

The implemented solution was evaluated on the Fast Models
emulator, using a model of the Versatile Express (VE) board
with a single-core ARM Cortex-A9. In order to measure the
impact in the RT properties of the system and assess the over-
head introduced by our approach we performed two different
kind of experiments: first we compared the native single-core
version of the FreeRTOS (v. 7.0.2) against FreeTEE, running
Thread Metrics Benchmark Suite, and then we performed
specific microbenchmarks to investigate the latency of the
system. MMU, caches, branch predictor and others dynamic
architectural features were disabled in the secure world side.
Performance Monitoring Unit (PMU) were used to assess the
world switch and latency overhead.

Table I presents the achieved results from running Thread
Metrics Suite. As it can be seen, the overhead introduced by
our approach in the RT behaviour is null. This is perfectly
understandable because once T-FreeRTOS starts running RT
tasks, it will never be interrupted by any secure-related feature.
Furthermore, all introduced kernel modifications were care-
fully implemented to privilege the execution of RT features
first. For example, in conditional statements (if, switch), secure
features were introduced after RT features to not compromise
the execution flow.

Interrupt latency is the measurement of system’s response-
time to an interrupt, which corresponds to the elapsed time
between interrupt assertion and the instant that a response
happens. Equation 1 expresses the system latency: τH is
the hardware dependent time which depends on the interrupt
controller on the board as well as the type of the interrupt; τOS

is the OS-specific induced overhead; and τWS is the monitor-
specific induced overhead (world switch).

τIL = τH + τOS + (τWS) (1)

Our experiments showed that latency in the native system
(FreeRTOS) is 172 clock cycles. In equation 1, the last parcel
is the extra overhead induced by our approach, which only
happens in a specific case: when the RTOS has no RT ready-
to-run task and consequently Monitor is invoked to perform
a world switch. Since Monitor runs with all interrupt sources
disabled, the worst case scenario happens when a FIQ request
(e.g., RTOS tick) arrives while a secure to non-secure context
switch is starting. In this case, the request is handled only after

two complete world switches, which corresponds to a worst
case interrupt latency of 335 clock cycles. Since the overhead
introduced on latency has a deterministic upper bound, it can
be taken into account when designing the RT system.

V. RESEARCH ROADMAP

Work in the near future will proceed through the imple-
mentation of the GlobalPlatform TEE Client and GlobalPlat-
form TEE Internal specifications. The TEE client API, like
TrustZone API, defines a set of interfaces for connecting to
and invoking a secure service. The TEE internal API, on the
other hand, defines the runtime support for the development of
trusted applications running inside the TEE. Since GlobalPlat-
form consortium not only is leading in providing specifications
and standards for the development of security solutions but
also providing a more extensive specification than TrustZone
API, we will guarantee a higher level of interoperability and
standardization in our system.

As FreeTEE is currently implemented (single-core), the
GPOS only runs when there is no RT ready-to-run task in
the system. Migration to multicore will help to overcome
this drawback, and so research will focus on migration to
ARM multicore architectures. Several multicore configurations
targeting asymmetric (AMP) and symmetric (SMP) multipro-
cessing should be exploited and experimented, to conclude
which one better fits the FreeTEE requirements and use-cases.
For example, an AMP approach will be adequate to run each
OS simultaneously, however if the GPOS request a secure
service to the T-RTOS while it is running a RT task, the
response will be delayed until the OS finishes executing such
task, and the advantage will be neglected.

From a different perspective, research will continue towards
the investigation and development of a secure hardware-based
communication mechanism for TrustZone-based architectures.
Since no message-protection mechanism exists in TrustZone,
man-in-the-middle attacks can be performed to manipulate
the messages transferred through the channel (i.e., shared
memory). Security analysts have proven the vulnerabilities on
the TrustZone insecure channel, and to ameliorate this problem
Jang et al. proposed a framework called SeCRet [15]. Our idea
will go beyond state-of-art and it will be developed in the form
of proof-of-concept, a secure hardware-based communication
mechanism.

VI. CONCLUSION

As the emergence of next-generation embedded devices
continues to stretch the market’s imagination with unique
combinations of applications, not only RT and safety but now
also security is emerging as a new dimension in embedded
system design. ARM TrustZone technology offers an innova-
tive approach to address security from the outset and is being
used as a foundation for a TEE realization, but the problem
is that TEE specification does not address RT requirements.
This work in progress paper presented FreeTEE, a TrustZone-
based architecture that implements the basic building blocks of
a TEE as a lower-priority thread of FreeRTOS. This approach

preserves the RT properties of the system and still guarantees
security from the outset. As demonstrated by preliminary
results, the RT properties of the RTOS remain practically
unaffected, and only a small overhead on latency is induced.

The research roadmap section described that research in the
near future will focus on the implementation of GlobalPlat-
form specification, and on the migration and exploration of
different multicore configurations. Research will then proceed
towards the development of a secure hardware-based commu-
nication mechanism which reinforces and protects the secure
channel.

VII. ACKNOWLEDGEMENTS

Sandro Pinto is supported by FCT - Fundação para a Ciência
e Tecnologia (grant SFRH/BD/91530/2012). This work has
been also supported by FCT - Fundação para a Ciência e Tec-
nologia within the Project Scope: PEst-UID/CEC/00319/2013.

REFERENCES

[1] G. Heiser, “The role of virtualization in embedded systems,” in Pro-
ceedings of the 1st Workshop on Isolation and Integration in Embedded
Systems, ser. IIES ’08. ACM, 2008, pp. 11–16.

[2] S. Karnouskos, “Stuxnet worm impact on industrial cyber-physical
system security,” in IECON 2011 - 37th Annual Conference on IEEE
Industrial Electronics Society, Nov 2011, pp. 4490–4494.

[3] D. N. Serpanos and A. G. Voyiatzis, “Security challenges in embedded
systems,” ACM Trans. Embed. Comput. Syst., vol. 12, no. 1s, pp. 66:1–
66:10, Mar. 2013.

[4] F. Bruns, D. Kuschnerus, and A. Bilgic, “Virtualization for safety-
critical, deeply-embedded devices,” in Proceedings of the 28th Annual
ACM Symposium on Applied Computing, ser. SAC ’13. ACM, 2013,
pp. 1485–1492.

[5] U. Steinberg and B. Kauer, “Nova: A microhypervisor-based secure vir-
tualization architecture,” in Proceedings of the 5th European Conference
on Computer Systems, ser. EuroSys ’10. ACM, 2010, pp. 209–222.

[6] F. Bazargan, C. Y. Yeun, and M. J. Zemerly, “State-of-the-art of
virtualization, its security threats and deployment models,” International
Journal for Information Security Research (IJISR), vol. 2, no. 3/4, pp.
335–343, 2012.

[7] ARM, “ARM Security Technology - Building a Secure System using
TrustZone Technology,” Tech. Rep., 2009.

[8] L. Jing, J. Chunhua, and Y. Xia, “Design and implementation of security
os based on trustzone,” in Electronic Measurement Instruments (ICEMI),
2013 IEEE 11th International Conference on, vol. 2, Aug 2013, pp.
1027–1032.

[9] S. Pinto, D. Oliveira, J. Pereira, N. Cardoso, M. Ekpanyapong, J. Cabral,
and A. Tavares, “Towards a lightweight embedded virtualization archi-
tecture exploiting arm trustzone,” in Emerging Technology and Factory
Automation (ETFA), 2014 IEEE, Sept 2014, pp. 1–4.

[10] O. Schwarz, C. Gehrmann, and V. Do, “Affordable separation on
embedded platforms,” in Trust and Trustworthy Computing, ser. Lecture
Notes in Computer Science, T. Holz and S. Ioannidis, Eds. Springer
International Publishing, 2014, vol. 8564, pp. 37–54.

[11] X. Ge, H. Vijayakumar, and T. Jaeger, “Sprobes: Enforcing kernel code
integrity on the trustzone architecture,” CoRR, vol. abs/1410.7747, 2014.

[12] D. Liu and L. P. Cox, “Veriui: Attested login for mobile devices,” in
Proceedings of the 15th Workshop on Mobile Computing Systems and
Applications, ser. HotMobile ’14. ACM, 2014, pp. 7:1–7:6.

[13] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma,
and W. Shen, “Hypervision across worlds: Real-time kernel protection
from the arm trustzone secure world,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’14. ACM, 2014, pp. 90–102.

[14] ARM, “TrustZone API Specification - version 3.0,” Tech. Rep., 2009.
[15] J. Jang, S. Kong, M. Kim, D. Kim, and B. B. Kang, “Secret: Secure

channel between rich execution environment and trusted execution
environment,” in Proceedings of the 2015 Network and Distributed
System Security, ser. NDSS ’15, 2015.

