
RT-SHADOWS: Real-Time System Hardware for
Agnostic and Deterministic OSes Within Softcore

T. Gomes, S. Pinto, P. Garcia, A. Tavares
Centro Algoritmi - University of Minho

{tgomes, sandro.pinto, pgarcia, atavares}@dei.uminho.pt

Abstract—Multithreading is a key feature for dealing with
the complexity of current generation embedded devices. Real-
Time Operating Systems (RTOSes) provide a higher level of
abstraction that alleviates design complexity and time-to-market
pressure, inducing, however, undesired latencies and unpre-
dictable execution times. Research works have been focusing on
improving performance, determinism or agnosticism, but none
simultaneously tackled the three metrics.

This work in progress paper presents RT-SHADOWS, a co-
designed architecture that promotes configurability, determinism
and agnosticism from the outset. A multi-thread ARM soft-
core processor was exploited and extended by offloading the
scheduling-related features into the hardware layer. The hard-
ware multi-thread support is transparent for the standard RTOS
applications and independent of the Operating System (OS).
Promising preliminary results demonstrate huge improvements
on performance and determinism, with only a small cost on
hardware.

Index Terms—Real-Time OS, Determinism, Latency, Hard-
ware offloading, FPGA, Multithreading, ARM.

I. INTRODUCTION

Multi-thread architectures are still the best solution for
applications with a certain degree of concurrency where
multiple threads require high-level of synchronization and
communication to perform a real-time task [1]. To deal with
the complexity of current embedded systems, RTOSes are
used as an abstraction layer on top of the hardware, pro-
viding several Application Programming Interfaces (APIs) to
simplify and accelerate the development of multi-threaded
applications. However, RTOSes induce undesired latencies and
unpredictable execution times which consequently increase
overhead and contribute to the system’s performance degra-
dation [2].

A myriad of approaches try to alleviate this overhead by
offloading several OS features into the hardware layer [3], [4],
[5]. The drawback of such approaches is that they only support
their own OS or their solution only supports a specific OS,
requiring a huge porting effort and/or limiting the re-utilization
of legacy software. MAPUSOFT [6] is an innovative software-
based solution that provides agnosticism between applications
and the OS (i.e., endorsing a software-only approach).

From another perspective, other solutions [7], [8], [9], [10]
focus on tackling the nondeterminism of real-time systems.
As well stated in the literature, OSes (e.g., FreeRTOS and
uCOSII) suffer from the rate-monotonic priority inversion [11]
which leads to a dual-priority space between threads and

interrupts, therefore breaking the deterministic execution of
preemptive priority-based RTOSes. Some of the aforemen-
tioned works solve this problem by exploiting Commercial
off-the-shelf (COTS) hardware only, while others implement
specific hardware.

This work in progress paper goes beyond state-of-art
presenting a parameterisable, deterministic and agnostic co-
designed architecture, which is based on a multi-thread ARM
softcore processor. RT-SHADOWS ensures agnosticism by
offering hardware multi-thread support independently of the
RTOS. Promising preliminary results demonstrate how this
solution is able to alleviate the OS overhead through hardware
acceleration, ensuring a deterministic and shorter execution
time.

II. RT-SHADOWS

Our architecture, depicted in Fig. 1, is based on a Multi-
Thread ARM processor. An in-house ARMv5-compliant soft-
core was modified to provide configurable hardware multi-
thread support for real-time systems. RT-SHADOWS is a co-
designed hardware/software architecture with parameterisable,
deterministic and agnostic features. The number of hardware
threads is configurable, depending on the application demands.
Currently, our architecture supports 1, 4 or 8 hardware threads
configuration.

The hardware multi-thread support is accomplished by
replicating task-specific registers (e.g., register-file and status
register) and connecting a hardware scheduler into the proces-
sor core. The hardware scheduler is implemented as a tightly-
coupled ARM Co-processor, ensuring all communications
between ARM core and the co-processor are performed in
a short and deterministic time. A set of thread management
APIs were developed in order to deterministically interface
with scheduler, implementing the basic thread management
functionalities (e.g., create/delete, resume/suspend, change pri-
ority, etc).

RT-SHADOWS presents 2-levels of OS HW/SW trans-
parency. The first-level of transparency is guaranteed on API
level, i.e., the applications use the standard RTOSes’ APIs. The
RTOSes’ APIs are wrapped into the RT-SHADOWS APIs in
order to interface with the hardware multi-thread support. This
means no modifications are required on the OS kernel source.
The second-level is given by the generic implementation of the
hardware multi-thread support. Every parameter can be config-
ured by software, using ARM coprocessor instructions, which978-1-4673-7929-8/15/$31.00 c© 2015 IEEE

Fig. 1: RT-SHADOWS Top-level Architecture

makes the implementation non-intrusive and independent of
the RTOS. In summary, the RTOS’s APIs remain intact and
only port-specific files of the OS are modified.

Additionally, our architecture is able to solve the rate-
monotonic priority inversion using our task-aware interrupt
controller presented in [10].

A. Hardware Multi-Thread Support

Depending on the application demands, RT-SHADOWS ar-
chitecture can provide hardware support to a different number
of threads. Each hardware thread owns its register-file bank
as well as its own status register ensuring multiple contexts
within the same core. The ARM architecture supports multiple
executions modes (e.g., IRQ, Supervisor, User, etc) which
allows different OSes to run their threads in different modes.
In order to speed-up exception processing time, ARM archi-
tecture uses banked registers which are only visible depending
on the current cpu mode. In order to support multiple OSes,
our architecture allows the mode of the banked registers to
be software configurable. For instance, FreeRTOS’s threads
run in system mode while uCOSII’s threads run in supervisor
mode, therefore the banked registers must be in same mode
as the thread’s mode used by the OS. The main advantage of
this approach, i.e., banked registers per thread, is related with

the thread’s context-switch. Switching the currently running
thread can be done deterministically and with no latency.
Thus, several threads may execute concurrently with almost
no overhead. The cost of this approach is minimal considering
that all the functional units through the pipeline are shared by
several threads.

In real-time systems, the system’s response time to an inter-
rupt may have significant impact in the system’s performance.
In order to ensure a short and predictable interrupt handling, a
hardware thread is dedicated to the RTOS kernel. Hence, the
OS interrupt latency overhead is decreased as no context of
the currently running thread must be saved and the interrupt
service routine can be executed in shorter time.

B. Hardware Scheduler

The hardware scheduler is in charge of which thread should
be running at any instant of time. The main features of
the implemented hardware scheduler are: (i) configurable
scheduling algorithm depending on the RTOS used; (ii) ability
to provide the next thread to execute in one clock cycle;
(iii) quick and deterministic communication link between the
scheduler and the processor core, since it is implemented as
a tightly-coupled coprocessor; and (iv) thread’s information
is stored in a small and compact array of Thread Control
Blocks (TCBs). Currently, the hardware scheduler supports
the priority-based scheduling algorithm where the order of
the priorities (e.g., ascendant or descendent) can be configured
by software. This enables different OSes to configure if low
or high priority numbers denote low or high priority threads.
This algorithm outputs at any time what is the highest priority
thread ready to run. In order to be compatible with different
OSes (e.g., FreeRTOS), the scheduler is able to apply a round-
robin scheme over the threads which share the highest priority
level.

A hardware thread is represented by a TCB. The TCB
provides relevant thread’s information such as its priority, cur-
rent state, handler and stack pointer. The hardware scheduler

Fig. 2: RT-SHADOWS hardware cost for a different number
of threads with hardware multi-thread support

FreeRTOS µc/OS-II RT-SHADOWS

Feature API Dispatch x̄ s x̄ s x̄ s ov. (%)

Create Thread
xTaskCreate()

w 30828 33 - - 2321 5 -92.5%
w/o 27569 30 - - 2322 5 -91.6%

OSTaskCreate()
w - - 38282 62 2045 5 -94.7%

w/o - - 36572 52 2044 4 -94.4%

Delete Thread
vTaskDelete()

w 71892 64172 - - 1445 5 -98.0%
w/o 3852 5 - - 1445 5 -62.5%

OSTaskDel()
w - - 10004 80 1228 5 -87.7%

w/o - - 7736 12 1228 5 -84.1%

Suspend Thread
vTaskSuspend()

w 71167 63918 - - 1445 5 -98.0%
w/o 3301 6 - - 1445 5 -56.2%

OSTaskSuspen()
w - - 6868 77 1228 5 -82.1%

w/o - - 2411 7 1228 5 -49.0%

Resume Thread
vTaskResume()

w 6943 10 - - 1145 5 -79.2%
w/o 4196 7 - - 1145 5 -65.6%

OSTaskResume()
w - - 6563 36 1228 5 -81.3%

w/o - - 4731 11 1228 4 -74.0%

Set Thread Priority
vTaskPrioritySet()

w 71281 63659 - - 1337 5 -98.1%
w/o 6238 1675 - - 1337 5 -78.6%

OSTaskChangePrio()
w - - 9433 190 1143 4 -87.9%

w/o - - 7438 14 1143 4 -84.6%

TABLE I: Comparison between the performance and jitter results in clock cycles for each architecture

provides a full interface with the hardware threads: (i) it allows
threads to be created with any priority and any initial state, and
to initialize the thread’s stack pointer as well as the thread’s
arguments; (ii) get or set at any time, any of the thread’s
attributes using a MCR or MRC instructions for each thread
in the system; (iii) it provides an one-instruction access to
the data of the currently executing thread in order to perform
quicker changes on the running thread data.

III. PRELIMINARY RESULTS

The implemented architecture was evaluated on a Kintex-
7 FPGA Embedded Kit (XC7K325T), with a CPU speed of
33 MHz. In order to determine the hardware, performance,
determinism and interrupt latency overhead we performed
three different kind of experiments: (i) we compared the
synthesis hardware results of ARM SoC with and without the
hardware multi-thread extension; (ii) we compared FreeRTOS
and µc/OS-II APIs running on the correspondent native RTOS
using the single-thread ARM core (i.e., without hardware
multi-thread support), against the same APIs running on the
RT-SHADOWS architecture (i.e., with hardware multi-thread
support); and (iii) we measured the interrupt latency on each
architecture. MMU, caches and other dynamic architectural
features were disabled. Performance Monitoring (PM) unit
was used to assess the performance, determinism and interrupt
latency overhead (in clock cycles).

Fig. 2 shows the hardware cost of our approach with hard-
ware multi-thread support for four threads and eight threads
plus the hardware scheduler. Our approach impacts only on
the number of Flip-Flops (FF) and LUTs used. The overhead
of four hardware threads is of 0.4% in FFs and 2% in LUTs
while for eight threads is of 0.97% in FF and 3.9% in LUTs.

In order to assess the performance (execution time) and

determinism (latency variance, known as jitter) of each API,
several experiments were conducted. These results translate
the mean value of a variation in different parameters: (i) the
number of tasks; (ii) the priority of the tasks; and (iii) the
gap between consecutive tasks’ priority. For instance, each
API may have different outcomes depending on different
parameters such as the current threads’ state or priorities.
These parameters were varied in order to evaluate the API
in two different scenarios, one where no thread is dispatched
after the API is executed and another where the API triggers
the dispatching of another thread. In the former scenario, the
time measured is given by the time the API starts executing
until the last instruction of the API is executed. In the latter,
the time is given by the time that the API starts executing until
the first instruction of the new thread to execute is issued from
memory. Hence, on this time will be included the context-
switch operation which is divided in three main parts: (i) save
the context of the current thread; (ii) obtain the next thread to
execute; and (iii) restore the context of the next thread.

Table I shows the achieved results. As depicted, RT-
SHADOWS outperforms the native versions where no hard-
ware multi-thread support is used. Also, the API’s nondeter-
minism is reduced due to high-deterministic APIs provided by
our architecture. Nevertheless, a small value of jitter is found
on the RT-SHADOWS’s APIs which is justified by the use of
different clock frequencies between the processor core and the
DDR3 memory controller (i.e., the time of a memory access
is not fixed). Moreover, the execution time of the hardware-
based APIs are independent of any of the varied parameters,
such as the number of threads and their priorities.

RT-SHADOWS also improves the OS interrupt overhead
which is defined as time between cpu interruption until the
first instruction of the corresponding interrupt service routine

FreeRTOS µc/OS-II RT-SHADOWS

x̄ s x̄ s x̄ s ov. (%)

1250 3 - - 436 2 -65.1%
- - 2250 6 1363 5 -39.4%

TABLE II: OS interrupt overhead in clock cycles for each
architecture

(ISR) is issued from memory [2]. Usually, on a typical
RTOS, this encompasses saving the context of the running
thread, obtaining the source of the interrupt from the interrupt
controller and branch to the ISR. Table II shows the benefits
in terms of performance and predictability of using hardware
multi-thread support over the native architecture.

IV. RESEARCH ROADMAP

Work in the near future will proceed through the offloading
of other kernel services to hardware. Currently, only a subset
of the task management APIs is implemented in hardware. The
idea is to guarantee support not only for all the task manage-
ment APIs of each RTOS, but also for another services such as
synchronization, communication, timing, etc. Simultaneously
to the extension of kernel services support, we will extend also
the list of supported RTOSes. As previously described, our
strategy for agnosticism is based on a API mapping strategy,
which maps the APIs of existent RTOSes to the APIs of RT-
SHADOWS. Each time we want to support a new RTOS,
we only need to study the list of APIs of the desired RTOS
and develop a new mapping file. This way, RT-SHADOWS
transparency levels will be validated by extending the list of
supported RTOS such as EmbOS and uTKernel.

After, research will focus not only in the extension of
the number of supported hardware threads but also in the
scalability of the corresponding implementation approach.
Our current solution only supports a maximum number of
8 hardware threads. Increasing this number may not be so
trivial as the system may not scale well. Adopting a scalable
and configurable strategy will abolish one significant limitation
of our current solution. From a different perspective, the
possibility of coexistence of software and hardware threads
will be also object of study. For systems with limited hardware
resources (FPGA or Silicon) or where an increase in the
hardware resources can have a negative impact (monetary,
area-constraint, power-consumption) this option will not limit
our solution. Therefore, if more threads are created than the
number of available hardware threads, software threads will
be created and dispatched according to their priority.

Finally, research will continue towards the RT-SHADOWS
refactoring to allow fine-grain configurations/customizations.
The ultimate goal should be to develop a profiling tool that,
through a hardware/software co-design methodology, explores
the migration of software threads to hardware accordingly to
the application demands and constraints.

V. CONCLUSION

This paper presented our work in progress towards the
development of RT-SHADOWS, a co-designed hardware/soft-
ware architecture that promotes configurability, determinism
and agnosticism. We showed how RT-SHADOWS successfully
tackled two important metrics of real-time systems such as
performance and determinism by migrating the thread sched-
uler to hardware and providing hardware multi-thread support.
Our solution presents very low overhead ratio in terms of
area usage and performance improvements. This approach
is able to surpass related work by providing an agnostic
hardware acceleration solution which is independent of any
specific RTOS. Future work will focus on extending the RT-
SHADOWS architecture to support new features described in
research roadmap section.

VI. ACKNOWLEDGEMENTS

Tiago Gomes is supported by FCT - Fundação para a
Ciência e Tecnologia (Grant SFRH/BD/81682/2011). This
work has been also supported by FCT - Fundação para
a Ciência e Tecnologia within the Project Scope: PEst-
UID/CEC/00319/2013.

REFERENCES

[1] K. D. Kissell. (2007) Demystifying multithreading and multi-
core. [Online]. Available: http://www.eetimes.com/document.asp?doc
id=1271568

[2] F. Sheikh and D. Driscoll, “White paper: Mentor graphics - measuring
rtos performance: What? why? how?” Tech. Rep., 2011.

[3] D. Andrews, W. Peck, J. Agron, K. Preston, E. Komp, M. Finley, and
R. Sass, “hthreads: a hardware/software co-designed multithreaded rtos
kernel,” in Emerging Technologies and Factory Automation, 2005. ETFA
2005. 10th IEEE Conference on, vol. 2, Sept 2005, pp. 8 pp.–338.

[4] J. J. Labrosse, “White paper: Hardware-accelerated rtos: c/os-iii
hw-rtos and the r-in32m3,” Tech. Rep., accessed: 2015-05-13.
[Online]. Available: http://micrium.com/hardware-accelerated-rtos-%
C2%B5cos-iii-hw-rtos-and-the-r-in32m3/

[5] M. Naotaka, I. Takuya, H. Shinya, T. Hiroaki, and S. Katsunobu, “Arm-
based soc with loosely coupled type hardware rtos for industrial network
systems,” in Proceedings of the 10th Annual Workshop on Operating
Systems Platforms for Embedded Real-Time Applications, ser. OSPERT
’14, 2014, pp. 9–16.

[6] Mapusoft, “White paper: Mapusoft os abstractor,” Tech. Rep., accessed:
2015-05-13. [Online]. Available: http://www.mapusoft.com/wp-content/
uploads/documents/osabstractor whitepaper.pdf

[7] L. Leyva-del Foyo, P. Mejia-Alvarez, and D. de Niz, “Predictable inter-
rupt management for real time kernels over conventional pc hardware,”
in Real-Time and Embedded Technology and Applications Symposium,
2006. Proceedings of the 12th IEEE, April 2006, pp. 14–23.

[8] W. Hofer, D. Lohmann, F. Scheler, and W. Schroder-Preikschat, “Sloth:
Threads as interrupts,” in Real-Time Systems Symposium, 2009, RTSS
2009. 30th IEEE, Dec 2009, pp. 204–213.

[9] S. Pinto, J. Pereira, D. Oliveira, F. Alves, E. Qaralleh, M. Ekpanyapong,
J. Cabral, and A. Tavares, “Porting sloth system to freertos running
on arm cortex-m3,” in Industrial Electronics (ISIE), 2014 IEEE 23rd
International Symposium on, June 2014, pp. 1888–1893.

[10] T. Gomes, P. Garcia, F. Salgado, J. Monteiro, M. Ekpanyapong, and
A. Tavares, “Task-aware interrupt controller: Priority space unification
in real-time systems,” Embedded Systems Letters, IEEE, vol. 7, no. 1,
pp. 27–30, March 2015.

[11] F. Scheler, W. Hofer, B. Oechslein, R. Pfister, W. Schröder-Preikschat,
and D. Lohmann, “Parallel, hardware-supported interrupt handling in an
event-triggered real-time operating system,” in Proceedings of the 2009
International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems, ser. CASES ’09. New York, NY, USA: ACM,
2009, pp. 167–174.

