Towards an FPGA-Based Network Layer Filter for
the Internet of Things Edge Devices

T. Gomes, F. Salgado, S. Pinto, J. Cabral and A. Tavares
Centro Algoritmi - University of Minho
{tiago.m.gomes, filipe.salgado, sandro.pinto, jorge.cabral, adriano.tavares} @algoritmi.uminho.pt

Abstract—In the near future, billions of new smart devices will
connect the big network of the Internet of Things, playing an
important key role in our daily life. Allowing IPv6 on the low-
power resource constrained devices will lead research to focus
on novel approaches that aim to improve the efficiency, security
and performance of the 6LoWPAN adaptation layer. This work
in progress paper proposes a hardware-based Network Packet
Filtering (NPF) and an IPv6 Link-local address calculator which
is able to filter the received IPv6 packets, offering nearly 18%
overhead reduction. The goal is to obtain a System-on-Chip
implementation that can be deployed in future IEEE 802.15.4
radio modules.

Index Terms—Internet-of-Things (IoT), Packet Filter, System-
on-Chip, FPGA, 6LoWPAN, IPv6, Contiki-OS.

I. INTRODUCTION

Everyday new smart devices are getting connected to the
internet, building the so-called Internet of Things (IoT). Daily
usage objects are becoming smarter and start to play a key role
in our everyday life [1]. From a complex Smart City Monitor-
ing System to a simple Smart Street Lamp or from an advanced
security system to a Patient Vital Signs Monitoring System
[2,3], all these “Things” have a common basic requirement:
connectivity. A device which cannot communicate and interact
with other devices is often considered as limited and soon
will be seen as useless. However, the exponential growth of
the IoT infrastructure leads to several challenges, among these:
scalability and interoperability [4]. Scalable and standard com-
munication protocols will better fulfil these requirements [5,6],
as standard protocols target the interoperability, contributing
for a rapid development by easily enabling heterogeneous
devices to communicate.

The internet, as we know it, cannot address such big
number of connected devices. In spite of the Internet Protocol
(IPv4) providing a good infrastructure and robust protocol to
reach devices from anywhere, it cannot provide unique global
reachability as it is limited to 32-bit of singular addressable
interfaces and it was not initially designed to handle such
kind of devices. IPv6 is the key for connecting myriads of
smart devices on the new internet era [7]. Initially conceived
to support scalability, with 128-bit for unique addressing along
with other enhanced and new features, allows to all devices to
be singly identified and reachable any time from anywhere.

The Low Rate Wireless Personal Area Networks (LR-
WPANSs), whose forming nodes are predominantly resource
constrained (in terms of memory, processing capabilities,

978-1-5090-1314-2/16/$31.00 ©2016 IEEE

power, etc.) are mainly IEEE 802.15.4 based networks. The
IEEE 802.15.4 standard has been widely adopted by well-
known technologies like ZigBee and, up till now, proved
to be the best for implementing the physical (PHY) and
MAC layers. All devices should be able to participate in
the complex IoT network. Thus, in order to use the IPv6
standard with the current technology, the IPv6 over Low
power Wireless Personal Area Networks (6LoWPAN) [8] was
specially developed allowing this protocol to be used over
the IEEE 802.15.4 data frames, implementing all the packet
features such as fragmentation and reassembly, packet header
compression, Internet Control Message Protocol (ICMP), etc.
Per contra, enabling all devices to be reachable through
an unique IPv6 address over a 6LoWPAN network has a
drawback, as the overhead caused by the adaptation layer may
affect the performance of the small devices. When the full
stack is implemented (Network Layer with routing capabilities
and the Transport TCP/UDP Layer), formerly not used by
the IEEE 802.15.4 based networks, the performance of these
devices will drastically decrease.

Alike some basic features of the MAC layer being already
implemented by some modern radio transceivers (freeing some
processing overhead from the device’s CPU), the 6LoWPAN
protocol features can also be offloaded to hardware. These
radios are able to implement basic IEEE 802.15.4 network
processing, like filtering some packet header fields, e.g., the
Personal Area Network (PAN) address. This simple feature
contributes to a more efficient CPU working time, as the
processing of unwanted MAC data frames can be discarded.

Some approaches for offloading Network Stack capabilities
have already been attempted, e.g., in [9] an “RTOS in hardware
for energy efficient Software-based TCP/IP Processing” is
proposed while in [10] specific packet processors have been
used to implement specific applications with specific needs.
However, concerning the Network Layer and for the best of the
authors knowledge, this work in progress paper goes beyond
the state-of-the art, presenting an FPGA-based solution for the
Network Layer of the IoT networks. This Work-in-Progress
(WiP) focuses on the connectivity of the IoT Edge Devices
(EDs) by implementing features of the Network Layer in
dedicated hardware such as the packet filtering and processing
functionalities, aiming to increase the performance and thus
improve the overall efficiency. This approach aims to evaluate,
as a proof-of-concept, future efficient SoC implementations
with the new improvements and added features.

Length
FCF
Seq
Number
Dst
PAN
Dst
Address
ext64
Src
Address
ext64

RSSI
Lal

Figure 1. IEEE 802.15.4 Data frame example

II. NETWORK PACKET FILTER

This work presents a hardware Network Packet Filter (NPF)
accelerator which is able to implement important features such
as the filtering and processing of the incoming IP packets.
Fig. 1 depicts an example of an IEEE 802.15.4 Data frame
that carries the IPv6 packet. For the IP address filtering, the
NPF is able to filter, by accepting or discarding, the incoming
packets regarding the destination and/or source IP address.
Due to the used IPv6 compression (obtained on the IPHC
header field [11]), the MAC Data frame header is needed to
generate the IP addresses from the Dest Addr and Source Addr
fields. For instance, based on the IPHC header information
value given in Fig. 1 (0x7e33), the IPv6 addresses in use
are fully compressed and must be calculated as follows: the
128-bit IPv6 address is computed by filling the first 64-
bit with the Link-Local address prefix followed by zeros,
and the last 64-bit must be obtained from IEEE 802.15.4
MAC address. So the computed Link-Local IPv6 address is:
fe80::02:12:4b:00:04:13:3f:bf. The calculation of the address
is significantly faster in hardware than in software due to
the number of needed iterations, thus this feature is also
implemented by the NPF accelerator.

Following the same approach for the Transport Layer on the
same example, the UDP header can be also processed and the
Source Port and Dest Port can also be used to discard or accept
incoming packets by processing these fields. This simple
approach can, at several levels of the Network stack, promptly
pre-process and filter the received packets, adding another
level of security from the point of view of the connectivity
and availability of the ED. That means, for instance, when
unwanted packets (intentionally or for a different destination)
are received, if the destination or source IP address matches
the configured addresses, the filter will still drop a packet if
no UDP connection is listening on the received ports.

One can easily understand the consequence of the unwanted
packets received by the ED, which may permit intentional
attacks to a target ED by increasing a system overload causing
a well known Denial-of-Service (DoS) attack [12]. Under
such condition, the normal services provided by an ED will
drastically impact performance or even stop running.

802.15.4
| Transceiver

[P S

Figure 2. System architecture

The mentioned features are proposed to be implemented in
two ways, as the incoming packets may be of two different
types: (1) packets to be accepted or (2) packets to be discarded
by the Source Addr or the Dest Addr field. This allows to
implement the NPF with a novel concept of packet filtering,
by adding IP addresses to a White List Address (WLA) or to
a Black List Address (BLA) and filtering them accordingly,
which means addresses on the WLA will be accepted while
those ones on the BLA will be discarded. However, only one
approach can be used at a time.

If a device plays the role of a Network Router (NR), the NPF
gains a role of higher importance over the network. Usually the
traffic is higher on a NR, overloading the available bandwidth
in periods of high traffic. Adding these routing capabilities to
the NPF, the performance and availability of the EDs would
considerably increase, allowing more efficient operating modes
and resources saving. For the best of the authors knowledge,
this novel features were not yet proposed nor implemented in
hardware.

III. IMPLEMENTATION

In order to implement the proposed system (Fig. 2), the
Microsemi’s SmartFusion2 Security Evaluation Kit was se-
lected. This platform consists of a cost effective SoC FPGA
which integrates flash-based FPGA fabric and a 166 MHz
ARM Cortex-M3 processor, along with many other features.

The hardcore processor runs the Contiki-OS [13], an IoT
open-source Operating System (OS). It provides a full Net-
work Stack implementation with all the protocol standards
and layers, offering a variety of software applications and
examples, contributing for a better software development.
The Contiki-OS interacts with the hardware peripheral using
the Advanced Microcontroller Bus Architecture (AMBA) 3
Advanced Peripheral Bus (APB) protocol and the peripheral
connects with the selected IEEE 802.15.4 radio transceiver
(CC2520) using a Serial Protocol Interface (SPI) bus.

A. NPF hardware accelerator

The NPF accelerator implements all the aforementioned
features described in section II. When configured and enabled,
the peripheral is able to detect when the radio transceiver holds
a valid packet on the RX FIFO, to transfer the packet to an
internal memory and to process it according to the configured
fields. If the transferred packet is accepted and validated, the
NPF interrupts the OS execution to notify the reception of a

6LOWPAN
Network

-
U

SmartFusion2
UDP Server
Qaaa::b88:3217:9541:42¢

SmartRFO6EB fe80::b88:3217:9541:42¢

UDP Client
aaaa::212:4b00:413:3fbf
fe80::212:4b00:413:3fbf

Figure 3. Test Scenario

new IP packet, otherwise the NPF drops the packet and the OS
continues its normal execution. If the notification is ignored
by the OS, the NPF will run normally, giving priority to newly
arrived packets and overriding the previous ones, ignored by
the OS. When the OS requests a packet transfer from the NPF,
the module will give priority to the OS request and if a new
packet arrives, it will be held in the radio RX FIFO until the
current transfer ends.

The NPF module also implements registers that can collect
and hold statistics about the filtered/dropped packets according
to the selected fields. These registers can be read any time by
the OS, providing extra information about the module status.

B. Contiki-OS

Despite of Contiki-OS supporting several hardware plat-
forms and architectures, there is no support for the selected
hardware platform, therefore a software porting was made in
order to run the proposed features. All the platform dependent
OS modules (timers library, peripherals, etc), were created and
added to the OS in the form of software libraries, providing
a new platform support to the active Contiki community and
allowing code re-use by future developments. A peripheral
driver was built and integrated with the OS radio driver. This
OS agnostic implementation allows an easy integration with
other OSes that implement the IoT Network Stack, e.g., the
RIOT-OS [14].

At the current stage of research two features are fully
implemented by the NPF: (1) IP source address filtering and
(2) IP destination address filtering.

IV. PRELIMINARY RESULTS

In order to evaluate the implemented features, the testing
scenario depicted by Fig. 3 was developed. Concerning the
packet exchange between the two nodes, an UDP Server
runs on the SmarFusion2 platform and an UDP Client is
implemented by a SmartRFO6EB platform with a CC2538EM.
To perform tests and comparing results, the UDP Server runs
with the NPF turned ON (filtering by destination IP address)
and OFF (software will handle the packet discard). When the
NFP is ON the UDP Client IP address is added to the WLA
and it will be accepted by the NPF and delivered to the OS
network stack. Other addresses than the UDP Client IP address
will fail the WLA and will be dropped by the NPF, keeping

Filter ON 67659 FH—mm

= Filter OFF

Filter ON
Filter OFF

T T T d
60000 70000 80000 90000

Clock Cycles

T T
40000 50000

Figure 4. Performance evaluation

the OS free for other running processes, i.e., the OS will not
be interrupted when the NPF notifies the reception of new
packets.

A. Performance Evaluation

The conducted test consists of a simple benchmark where
the delay (in clock cycles) caused by the action of filtering
the incoming IP packets is measured, both in the software
and hardware solutions. To evaluate the NPF performance, the
UDP Client is configured to send valid Over-The-Air (OTA)
packets to the UDP Server at a fixed rate of 32 packets/s.

The results from this test are illustrated in Fig. 4. With the
NPF OFF the number of clock cycles needed to filter one IP
packet is, on average, 82613 and with the hardware module
ON the average is reduced to 67659, which represents an
overhead reduction of 18,1% (1.22x speed-up). The standard
deviation (20) is, respectively, 7729 and 1134. The results
suggest that just by offloading this feature to hardware, the
ED can accelerate the processing of valid received IP packets.
For the dropped packets, the OS will take the same time to
discard the packet. However if the NPF is ON, the time to
take this action is not consumed by the OS, leading to the test
in the section IV-B, where the impact of non-valid packets on
the OS execution performance is evaluated.

B. System’s Availability Evaluation

This test consists of running Thread-Metric Benchmark
Suite [15] in order to evaluate how the NPF alleviates the
OS overhead. This benchmark suite measures the time taken
by RTOSes to perform specific services, e.g., cooperative
and preemptive context switching and (preemptive) interrupt
processing. Although Contiki supporting preemptive and co-
operative modes, the preemptive mode is not yet supported in
the ARM Cortex-M3 architecture. Thus, only the cooperative
context switching test was conducted. The benchmark creates
five OS processes and one report process which periodically
prints the benchmark value. With NPF turned ON and OFF
on the UDP Server, the UDP Client sends packets to the UDP
Server and changes the Dest Addr field (to be filtered by the
NPF) at different packet sending rates (4, 8, 16, 32, 64, 128
and 256 packets/s).

Fig. 5 illustrates the results from the Thread-Metric bench-
mark test with the NPF OFF. The benchmark value decreases

NPF OFF

Thread-Metric score

400000
350000
300000
250000
200000
150000

400000
350000
300000
250000
200000
150000

2 pkifs

Packet Rate 64 pki/s
128 pkifs

256 pktfs

PDR (%)

Figure 5. Systems availability with NPF OFF

NPF ON

Thread-Metric score

400000
350000
300000
250000
200000
150000

400000
350000
300000
250000
200000
150000

4 pktfs

8 pktfs

16 pkt/s

32 pktfs

Packet Rate 64 pkt/s
128 pkifs

256 pkifs PDR (%)

Figure 6. Systems availability with NPF ON

as the the packet sending rate from the UDP Client increases.
This is due to the overhead caused by the OS tasks responsible
to receive and process the received packets, at all the stack
layers. Increasing the Packet Discard Rate (PDR), that is, the
number of packets to be filtered by the NPF, the benchmark
tends to perform better but still, the filtering and discarding
tasks, at the MAC and Network Layers have to be performed.
The second test, with the NPF ON (Fig. 6), show higher
benchmark results as the PDR increases. This represents the
overhead reduction caused by the NPF on discarding the
incoming packets whose Dest Addr do not match the WLA.
With a PDR of 100%, the benchmark result is the same as
with a packet rate of O packets/s. This represents the highest
system availability because the filtered packets by the NPF are
not received by the OS, thus the associated OS tasks are not
scheduled to run.

V. RESEARCH ROADMAP

Further research will focus on implementing all the pro-
posed features into the NPF, aiming to provide, as a proof-
of-concept a set of features and functionalities to be used by
future IEEE 802.15.4 radio systems for the IoT devices.

Other layers will be analysed and more candidates will be
selected to be implemented on the NPE. For the Network
Layer, the routing algorithm and the routing tables are seen
as good candidates, accelerating the routing process and in-
creasing the OS performance. Also, the OS availability may
be increased as the incoming packets to be forwarded to a
different destination, will be processed by the NPF instead
the OS.

VI. CONCLUSIONS

The number of devices connected and sharing data over the
IoT network will highly increase in the near future. Aiming
to increase the EDs performance and contribute to a more
efficient OS execution, this WiP proposes a novel solution to
deal with three of the main challenges for the new IoT devices:
(1) connectivity, (2) scalability and (3) interoperability.

The performed tests of the proposed NPF have shown a
overhead reduction of 18,1% as well an improvement on the
OS availability on processing other tasks. In our opinion, the
NPF offers a good solution to be deployed in future IEEE
802.15.4 radio transceivers as the 6LoWPAN is accepted as
the new standard to provide IPv6 connection to the constrained
EDs.

VII. ACKNOWLEDGEMENTS

Tiago Gomes is supported by FCT - Fundagéo para a Cién-
cia e Tecnologia (grant SFRH/BD/90162/2012). This work has
been supported by FCT - Fundagéo para a Ciéncia e Tecnolo-
gia within the Project Scope: PEst-UID/CEC/00319/2013.

REFERENCES

[1] L. Mainetti, L. Patrono, and A. Vilei, “Evolution of wireless sen-
sor networks towards the internet of things: A survey,” in Software,
Telecommunications and Computer Networks (SoftCOM), 2011 19th
International Conference on, Sept 2011, pp. 1-6.

[2] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet
of things for smart cities,” IEEE Internet of Things Journal, vol. 1, no. 1,
pp. 22-32, Feb 2014.

[3] L. Catarinucci, D. de Donno, L. Mainetti, L. Palano, L. Patrono,
M. L. Stefanizzi, and L. Tarricone, “An iot-aware architecture for smart
healthcare systems,” IEEE Internet of Things Journal, vol. 2, no. 6, pp.
515-526, Dec 2015.

[4] M. B. et all, “Deliverable D1.5 - Final architectural reference model for
the IoT v3.0,” Internet of Things - Architecture, Tech. Rep., 01 2015.

[5] C. Cees Links, “White paper: Wireless Communication Standards for
the Internet of Things,” GreenPeak Technologies, Tech. Rep., 01 2015.

[6] A. Foster, “White paper: Messaging Technologies for the Industrial
Internet and the Internet of Things,” PrismTech, Tech. Rep., 01 2015.

[7]1 1. Cisco Systems, “White paper: Integrating an Industrial Wireless
Sensor Network with Your Plant’s Switched Ethernet and IP Network,”
Cisco Systems, Inc, Tech. Rep., 01 2009.

[8] J. Olsson, “6LoWPAN demystified,” Texas Instruments, Tech. Rep., 10
2014.

[91 N. Maruyama, T. Ishihara, and H. Yasuura, “An rtos in hardware
for energy efficient software-based tcp/ip processing,” in Application
Specific Processors (SASP), 2010 IEEE 8th Symposium on, June 2010,
pp. 58-63.

[10] F. Hijaz, B. Kahne, P. Wilson, and O. Khan, “Efficient parallel packet
processing using a shared memory many-core processor with hardware
support to accelerate communication,” in Networking, Architecture and
Storage (NAS), 2015 IEEE International Conference on, Aug 2015, pp.
122-129.

[11] J. Hui and P. Thubert, “Compression format for ipv6 datagrams over ieee
802.15.4-based networks,” Internet Requests for Comments, RFC Editor,
RFC 6282, September 2011, http://www.rfc-editor.org/rfc/rfc6282.txt.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc6282.txt

[12] A.D. Wood and J. A. Stankovic, “Denial of service in sensor networks,”
Computer, vol. 35, no. 10, pp. 54-62, Oct 2002.

[13] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and
flexible operating system for tiny networked sensors,” in Local Computer
Networks, 2004. 29th Annual IEEE International Conference on, Nov
2004, pp. 455-462.

[14] RIOT. The friendly Operating System for the Internet of Things.
[Online]. Available: https://www.riot-os.org/

[15] I. Express Logic. Thread-Metric Benchmark Suite. [Online]. Available:
http://rtos.com/downloads/articles_and_white_papers-1/

