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Abstract— With the advent of the Internet of Things (IoT), 

devices are becoming smaller, smarter and increasingly 

connected. This explosion in connectivity creates a larger attack 
surface and new security threats. Recent cybersecurity attacks 

clearly demonstrated that the success of this new Internet era 

depends heavily on the security of those embedded devices that 

make up the IoT. In this paper, we argue in favor of a paradigm 
shift in the way computing systems are conceived and designed. 

We explain why the free and open RISC-V ISA promises to be a 

game-changer for embedded security, and we share our 
experience developing the industry-first RISC-V secure 

implementation of FreeRTOS based on MultiZone Security, the 

first Trusted Execution Environment for RISC-V. In the context 
of this research, we explain how to implement user-mode 

interrupts to secure modern embedded systems. 
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I.  INTRODUCTION 

The world is undergoing an unprecedented technological 
transformation, evolving from isolated systems to ubiquitous 
Internet-enabled 'things' capable of generating and handling 
vast amounts of security-critical and privacy-sensitive data [1]. 
This novel paradigm, commonly referred to as the Internet of 
Things (IoT), is a new reality that is enriching our everyday life 
but simultaneously creating several risks. Recent cybersecurity 
incidents, such as the Mirai Botnet, have clearly demonstrated 
that the success of this new Internet era is heavily dependent 
upon the trust and security built in these IoT devices. 

The ongoing cat-and-mouse game of hacks and patches is 
largely due by the intrinsic lack of security of the traditional 
computing model, which is not safe nor secure. Mainstream 
operating systems (OSes) are designed for functionality and 
speed. These systems follow a monolithic architecture, with 
most of the services enjoying privileged execution rights. 
Typically, programs share the same access to code and data 
and functional blocks communicate via shared memory 
structures such as buffers, stacks and hypes – a single failure in 
one component can bring the entire system down [2]. Even 
more evolved systems that implements virtual memory 
protection schemas have shown several vulnerabilities, mainly 
due to the complexity of the software necessary to operate the 
underlying MMU [3]. 

 

Over the last decades, several security-oriented 
technologies, such as Arm TrustZone [4] and Intel SGX [5], 
have been developed with the aim of providing stronger 
security primitives anchored in hardware. However, the sad 
reality is that these security technologies often fail to deliver on 
the promise. Firstly, they depend on specific hardware which is 
not typically available on all platforms. Secondly, the 
overwhelming complexity of properly implementing these 
security technologies often results in them not being used at all. 
Finally, over the last few years, confidence in these systems 
have been regularly questioned, due to the systematic 
discovery of critical vulnerabilities mostly due to their closed-
source proprietary nature [4, 6, 7]. 

As the number of IoT devices grows into the trillions, the 
road to a trustworthy Internet of Things requires an urgent 
paradigm shift in the way modern computing systems are being 
built. Bloated ‘vertical’ monolithic operating systems should 
give rise to a multitude of light weight ‘horizontal’ 
microkernels. Microkernel-based OSes implements a small 
TCB as the core of the system, with OS services separated into 
mutually-protected userland servers. Apart from the reduced 
TCB, microkernels promote a set of design principals, such as 
the least privilege and fault containment, which favors for 
security. 

Recent advances in computer architectures have brought to 
light an innovative computer architecture named RISC-V. 
RISC- V distinguishes from traditional platforms by offering a 
free and open instruction set architecture (ISA). RISC-V 
promises to be a game-changer for security by favoring 
simplicity over complexity, and by defining a comprehensive 
set of security building blocks in the ISA itself – so that the 
hardware “hooks” are already built into any RISC-V core. The 
job of orchestrating these security features and encapsulating 
their inherent complexity in proper implementations is left to 
the software layer. And in particular to a new class of light-
weight microkernels providing silicon-level containerization 
and ultimately policy-driven hardware-enforced security 
through separation. The free and open standard MultiZone 
Security is the first Trusted Execution Environment 
specifically developed from the ground up for RISC-V [8].  
MultiZone Security differs from traditional TEEs because it 
does not depend on custom hardware and simplifies the 
creation of secure end-to-end system stacks. 



In this paper, we start by discussing why the security of 
traditional computing model is fundamentally flawed and why 
we urgently need to change the way computing systems are 
designed at the core. We explain why RISC-V promises to be 
the most secure platform and we share our experience 
developing the industry-first secure implementation of 
FreeRTOS for RISC-V. In the context of the capabilities 
offered by the MultiZone TEE, we explain the implementation 
of unprivileged user-mode interrupts as a mechanism to 
enhance the security of modern embedded systems. 

II. THE FLAWED TRADITIONAL COMPUTING MODEL 

We argue that the security of traditional computing is 
flawed with regard to the monolithic architecture of 
mainstream operating systems and the lack of underlying 
separation provided at the hardware level. A typical example is 
the Linux implementation of the TCP/IP stack – by definition 
exposed to remote attack - as part of the kernel itself. Since 
general purpose OSes are designed for functionality and broad 
platform support, their size and complexity has grown well 
beyond the limit that security experts deem acceptable. 
Systems featuring a bloated TCB are intrinsically more 
vulnerable. The likelihood of undetected code vulnerabilities 
increases as a result of a larger number of lines of source code 
[3]. However, given the lack of pervasive hardware separation 
mechanisms, even in low-end embedded applications, where 
the TCB is typically several orders of magnitude smaller, we 
see general purpose operating systems that combine all 
functional code blocks in the same privileged space – if any 
available at all, which leads programs to share the same access 
to code and data (Fig. 1). 

Fig. 1. Traditional computing model. 

As the complexity of these systems grows, they tend to 
become an assemble of different code bases in the form of 
libraries developed and maintained by different commercial 
entities and open source communities. The quality and security 

posture of which is simply impossible to formally verify for 
non-trivial functionality. Due to the monolithic nature of the 
kernel, a single vulnerability in one component is usually 
enough to lead to privilege escalation, to exploit the entire 
system and likely to pivot into additional network-connected 
high value targets. For example, FreeRTOS, which has a TCB 
orders of magnitude smaller than Linux, was recently 
compromised due to several vulnerabilities in its integrated 
TCP/IP stack [2]. 

Even though rich operating systems usually implements 
some mechanisms intended to restrict unconditional access to 
memory-mapped resources (e.g., virtual memory via MMU), 
the complexity of these mechanisms makes them far from 
unbreachable. For example, the implementation of virtual 
memory management and hardware memory management 
units (MMU) has several drawbacks. Firstly, they require 
relative expensive hardware (e.g., silicon gates and TLBs) and 
software (e.g., 2-stage or 3-stage translation tables). Secondly, 
these systems require complex software layers to operate the 
MMU itself, which tends to increase the TCB of the system. As 
software is a product of the human intellect, it is guarantee to 
have defect – known as bugs. The resulting increase in TCB 
inevitably leads to an increased number of vulnerabilities. 
Nevertheless, even in resource constrained devices, which are 
expected to power the IoT, “the design complexity associated 
with correctly implementing technologies like memory 
protection units (MPUs) often results in them not being used at 
all” [9]. 

The very idea that simply adding complex hardware 
security primitives automatically results in more resilient 
systems is naïve at best – and often driven by aggressive 
marketing strategies. On the contrary, complexity is the enemy 
of security. Leading TEE solutions, such as Arm TrustZone 
and Intel SGX, enjoy vast mind share among developers, but 
have significant limitations. Firstly, they rely on specific 
hardware which is typically not available on all platforms. 
Secondly, they are admittedly complex and difficult to 
understand and properly implement. Finally, over the last few 
years, they have been witnessing a massive number of hacks 
and attacks, which have abruptly reduced the confidence in 
these systems. For example, a recent survey on Arm’s 
TrustZone technology [4] revealed that, according to the 
National Vulnerability Database (NVD) and several security 
bulletins (e.g., Qualcomm, Huawei, and Samsung), there are 
more than 130 known vulnerabilities regarding TrustZone and 
TrustZone-based TEE – and some can’t be patched as they are 
rooted in hardware. 

III. THE NEED FOR A SECURITY PARADIGM SHIFT 

While traditional computing systems implement security by 
adding complexity in the form of new layers of hardware and 
software, a more modern concept is to start from a minimalist, 
formally verifiable microkernel to enforces separation. The 
resulting system has a horizontal structure, with applications 
and services running side-by-side in isolated domains - see Fig. 
2. These containers should be loosely-coupled and should not 
share any memory-mapped resources. Communications should 
be implemented through a secure message-based system. Time 
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and space isolation should be enforced by a preemptive kernel 
according to policies statically defined by the system designer. 

This multi-domain design ensures that faults are contained 
within the sandbox and cannot affect the other parts of the 
system. These are analogous to docker containers implemented 
in servers [11], but do not require the underlying Kubernetes 
infrastructure which is not practical in resource-constrained 
devices. 

To be resilient, this new security paradigm has to be strictly 
coupled with innovative processor architectures such as the 
free and open RISC-V ISA. Introduced in 2011, the RISC-V 
ISA has rapidly grown in popularity and has now reached a 
level of maturity suitable for commercial applications. RISC-V 
promises to be a game-changer for security due to the openness 
and simplicity of its ISA. The ISA itself defines some security 
building blocks which include four well-defined privileged 
levels (rings), a set of physical memory protection 
mechanisms, and user-level interrupts extensions. The four 
privilege levels include: Machine mode (M-mode), Hypervisor 
mode (H-mode), Supervisor mode (S-mode), and User mode 
(U-mode). The combination of M and U modes is particularly 
suitable for resource-constrained embedded systems. To 
control access to physical memory-mapped resources, RISC-V 
specifies a state-of-the-art physical memory protection (PMP) 
unit. In addition, the “N” extension allows interrupt delegation 
to user mode from higher privilege levels. “N” extensions 
define a framework that can also be implemented in software – 
via trap-and-emulate – for processors that lack this extension. 

 

Fig. 2. Microkernel-based system: all functional blocks are isolated. 

IV. THE MULTIZONE TEE APPROACH 

MultiZone Security is the first Trusted Execution 
Environment designed from the ground up to leverage the 
hardware “hooks” built into the standard RISC-V ISA [8].  
MultiZone Security allows system designers to properly 
implement secure RISC-V applications without requiring 
specialized security skills or changes to the existing 

development processes.  MultiZone software is available on 
GitHub under Apache license 2.0 - free for non-commercial 
use.  

 MultiZone Security segregates the various functional 
blocks into an unlimited number of physically separated 
“Zones”. With the Multizone Configurator, the system designer 
defines read / write / execute policies and maps various 
physical resources to each zone - RAM, ROM, I/O, interrupts. 
Resource assignment if fine-grained down to 4-byte. Zones can 
overlap resources although this is not considered a best practice 
and will be flagged by the configurator. Inter-zone 
communications are secured via the InterZone messenger, 
which uses no shared memory.  MultiZone differs from legacy 
TEE technology in several ways: it doesn’t require custom 
hardware primitives - MultiZone works with any standard 
RISC-V core, it supports an unlimited number of equally 
secure zones - contrary to the antiquated TrustZone model of 
the two secure / non-secure worlds, and it doesn’t require 
changes in existing code – as it traps & emulates privileged 
instructions. 

Fig. 3. MultiZone system configured to run four independent zones.  

Fig. 3 depicts the MultiZone-based system that we 
developed to show a real-world example of our proposed 
security model. The system is configured to run four 
independent zones. These zones implement the basic functional 
blocks typically present in embedded connected devices, such 
as smart sensor and IoT endpoints in general. Zone 1 runs the 
industry-first RISC-V secure implementation of the popular 
FreeRTOS, zone 2 runs a secure TCP/IP stack, zone 3 provides 
Root of Trust, and zone 4 runs a bare-metal command line 
interface (CLI) for verification and benchmarking of the TEE. 
All zones are completely isolated and communicate through 
well-defined message-based interfaces provided by the secure 
InterZone Messenger. The MultiZone preemptive scheduler 
multiplexes zones execution according to a round-robin 
schema. An equally secure and more responsive cooperative 
behavior is possible by linking the yield () API part of the 
MultiZone C Library. Our research focuses on secure IoT 
devices that implement RISC-V M and U modes. To secure 
FreeRTOS, we adapted its source code to run in unprivileged 
user-mode. These modifications include FreeRTOS startup 
code, task management, context switching, exception handling 
and time management. In addition, we secured exception 
handling (Section IV.A) and time management (Section IV.B). 

A. Exception Handling 

The RISC-V ISA divides exceptions into two categories: 

synchronous exceptions and asynchronous interrupts - see 

Table 1. Synchronous exceptions arise as a result of 

instruction execution, such as accessing an invalid memory 

address or executing an instruction with an invalid opcode. 



Interrupts, in turn, are external events that are asynchronous to 

the instruction stream. 

 
Interrupt/ 
Exception 

Exception 
Code 

Description 

1 3 Machine software interrupt 

1 7 Machine timer interrupt 

1 11 Machine external interrupt 

0 0 Instruction address misaligned 

0 1 Instruction access fault 

0 2 Illegal instruction 

0 3 Breakpoint 

0 4 Load address misaligned 

0 5 Load access fault 

0 6 Store/AMO address misaligned 

0 7 Store/AMO access fault 

0 8 Environment call from U-mode 

0 11 Environment call from M-mode 

Table 1 – RISC-V ISA exception and interrupt cause.  

 
MultiZone User Mode Exceptions. The MultiZone TEE 

executes exceptions handlers in secure unprivileged user 

mode, in the context of the zone that triggers the synchronous 

exception or that is mapped to the specific interrupt. RISC-V 

exceptions are raised at the highest privilege level. The 

MultiZone TEE traps into the nanokernel and then forwards 

execution to the appropriate zone – if not already in scope.  

MultiZone provides two distinct C Library APIs to register 

synchronous exceptions and interrupt handlers: 

ECAL_TRP_VECT () and ECALL_IRQ_VECT () (see 

Listing 1). The registration of a handler automatically enables 

the relative interrupt. Each zone can register a separate handler 

for each RISC-V synchronous exception while external 

asynchronous interrupt handlers are individually assigned to a 

single zone according to the policies defined in the MultiZone 

configuration file. 

 

 

Listing 1 - MultiZone C API for registering exceptions and interrupt handlers.  

User Mode Synchronous Exceptions. In our secure 

implementation of FreeRTOS, the xPortStartScheduler 

method registers all synchronous exceptions with the TEE via 

the ECAL_TRP_VECT API. All traps point to a common 

handler _syncexception_entry - implemented in the FreeRTOS 

assembly file portasm.S. Note that by design, the secure 

execution of exception handlers in unprivileged mode means 

that the rich operating system itself isn’t trusted with trapping 

mechanisms other than the ones allowed by the TEE – i.e. 

yield. The message is placed in the mailbox by the nanokernel 

when the synchronous exception is triggered, before 

forwarding it to the zone. It contains the values of the mcause, 

mtval and mepc which are passed as arguments to the 

application exception handler described in the previous 

section. After the application handler's execution, its return 

value is stored in the stack, so that execution returns to a 

handler defined address and not necessarily to the original 

preempted instruction. The MultiZone TEE supports low-

latency vectored interrupts that map each interrupt source to 

its handler. However, we opted for a simplified 

implementation. All exceptions are served by a single handler 

responsible for consistent exception entry and exit behavior - 

e.g., save and restore task context. The _syncexception_entry 

handler redirects execution to an application-defined method 

which must be named handle_syncexception. As implemented 

in our demo application, this method takes in input the register 

values mcause, mtval, mepc and returns the appropriate value 

of the register mepc pointing to the instruction to be executed 

upon exit. The synchronous exceptions entry point is 

implemented in the _syncexception_entry. After disabling 

interrupts and saving the preempted context, the 

ECALL_RECV system call is used to poll messages from the 

zone's inbox. 

 

 

Listing 2 – Registering of synchronous exceptions in xPortStartScheduler.  

User Mode Interrupts. Most interrupts are tied to the 
application logic and as such handled at that level. Application 
code registers the relevant interrupt handlers dynamically 
through the ECALL_IRQ_VECT API - common entry point 
_interrupt_entry. The final handler handle_interrupt receives in 
input the value of the mcause register to properly forward the 
execution – see as an example the interrupt setup shown in 
Listing 3. 

 

Listing 3 – Interrupt initialization example at the application level 

/*  MultiZone API - libhexfive.h */ 
… 
 
/* Registers a handler against a trap*/ 
void ECALL_TRP_VECT (int, void *); 
 
/* Registers a handler for an interrupt*/ 
void ECALL_IRQ_VECT (int, void *); 
… 

BaseType_t xPortStartScheduler ( void ) 
{ 

... 
/* 0x0 Instruction address misaligned */ 
ECALL_TRP_VECT(0x0,syncexception_entry); 
/* 0x1 Instruction access fault */ ECALL_TRP_VECT(0x1, 
_syncexception_entry); 
... 
/* 0x7 Store access fault */ ECALL_TRP_VECT(0x7, 
_syncexception_entry); 
... 

} 

/*Entry Point for Machine Timer Interrupt Handler*/ void 
vPortSysTickHandler() 
{ 
/* Calculate next compare value */ 
const uint64_t now = ECALL_CSRR_MTIME(); 
const uint64_t then = now + (configRTC_CLOCK_HZ / 
configTICK_RATE_HZ); 
/* Increment the RTOS tick. */ 
if ( xTaskIncrementTick() != pdFALSE ){ ulPortYieldRequired = 
pdTRUE; 
} 
/* Request next timer interrupt */ ECALL_CSRW_MTIMECMP(then); 
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/* Application - Button 0 interrupt 
initialization */ void b0_irq_init() 
{ 

... 
/* Enable the interrupt */ 
ECALL_IRQ_VECT(16+LOCAL_INT_BTN_0, _interrupt_entry); 
localISR[IRQ_M_LOCAL + LOCAL_INT_BTN_0] = 
button_0_handler; 

} 

Our implementation defines two groups of interrupt handlers in 
the form of arrays: one for core-local interrupts, localISR, and 
one for external platform-level interrupts, _interrupt_handlers. 
Therefore, interrupt setup differs depending on whether it is a 
local or global interrupt. local_irq_en simply adds the handler 
to local handler array and registers the exact interrupt ID with 
the TEE. For global interrupts, g_ext_interrupt_handlers first 
sets up the PLIC, then adds the handler to the global interrupt 
array and finally registers the machine external interrupt ID 
(11) with the TEE. The main interrupt handler written in 
assembly is the _interrupt_entry. This low-level handler acts as 
prologue and epilogue to the application handler and 
implements the interrupt entry and exit logic. 

 

Listing 4 – Low-level interrupt handler (interrupt entry logic).  

Listing 4, shows the interrupt entry logic, till the moment the 
application level handler is called. The interrupt entry logic 
starts by saving the preempted context's register file to the 
stack. Next, it places the value of the mcause register in s0 
register, a callee- saved register, which guarantees this value is 
unchanged until the handler finishes execution. Then the 
current task TCB pointer is saved via the 
portSAVE_CONTEXT and execution continues to the 
application handler. The exit logic is the reverse process and 
implements the restore operation.  

B. Timer Management 

RISC-V platforms provide a real-time counter (machine 
timer) exposed as a memory-mapped machine mode register 
(mtime). In the context of MultiZone, timers are provided to 
zones through emulation of the machine timer. At the 
FreeRTOS level, time management reduces to the 
management of the tick timer. So, modifications were 
performed on the timer initialization and the interrupt handler 
itself. 

Timer initialization.  MultiZone provides a software 
implementation of the machine timer unique to each Zone. Soft 
timer initialization is done via the vPortSetupTimerInterrupt – 
see listing 5. It reads the current time via the 
ECALL_CSRR_MTIME API and then calculates the timestamp 
of the next tick. It then installs the timer handler for the timer 
exception and sets the Zone's timer compare register via the 
ECALL_CSRW_MTIMECMP - which also enables the 
exception. The reason for registering the timer handler as 
software trap rather than asynchronous interrupt is that this 
specific hardware implementation of RISC-V has only one 
physical timer available for the whole system. Therefore, its 

secure implementation is emulated in software by the TEE. 
Note that this doesn’t affect in any way the application flow as 
soft timer interrupts are at all the effects asynchronous in the 
context of the Zone execution. The software implementation 
does however affect resolution and jittering of the zone as soft 
timer interrupts remains pending until the Zone is in context. 
The actual impact on the system is however negligible thanks 
to the cooperative behavior of the MultiZone scheduler. 

 

Listing 5 – Implementation of Timer initialization. 

Timer interrupt. The timer interrupt handler (Listing 6) is 
similar to the common interrupt handler. The only difference is 
that instead of calling the generic interrupt handler, it calls 
directly the system tick handler vPortSysTickHandler. The 
vPortSysTickHandler function calculates the value of the timer 
for the next tick and calls the xTaskIncrementTick, which 
returns true if a new task is active and sets ulPortYieldRequired 
value accordingly. This value will later be checked on the 
handler epilogue to eventually trigger a context-switch. Finally, 
the soft timer compare register is set to the new tick value - 
which also re-enables the timer exception. 

Listing 6 – Timer interrupt handler. 

V. CONCLUSION 

In this paper we have discussed why RISC-V promises to 
change the way we build our systems for the better. We 
reported our experience in porting FreeRTOS for MultiZone 
Security, and we have highlighted the benefits of user mode 
interrupts for security. 
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_interrupt_entry: 
... 
/* Save RegFile context 
*/ pushREGFILE 
/* Save mcause */ 
LOAD s0, MCAUSE_OFFSET(sp) 
STORE zero, MCAUSE_OFFSET(sp) 
... 
/* Save Task context*/ 
portSAVE_CONTEXT 
/* Call IRQ handler (a0 = s0 = 
mcause) */ mv a0, s0 
jal handle_interrupt 
... 

void vPortSetupTimerInterrupt() { 

 

/* Calculate first tick timer compare */ 

const uint64_t ullCurrentTime = ECALL_CSRR_MTIME(); 

const uint64_t ullNextTime = ullCurrentTime + 
(configRTC_CLOCK_HZ / configTICK_RATE_HZ); 

/* Setup mtimer handler */ ECALL_TRP_VECT(0x3, _timer_handler); 

/* Request first tick interrupt */ 
ECALL_CSRW_MTIMECMP(ullNextTime); 

} 
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