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Abstract—Virtualization is already a key-enabling technology 

for mixed-criticality embedded systems. Open-source hypervisors 

such as KVM or Xen were not originally tailored for embedded 

constraints and real-time requirements, and depend on Linux, 

resulting in large TCBs and wide attack-surfaces. Furthermore, 

they do not address the numerous microarchitectural contention 

points and side-channels that have been shown to break true VM 

isolation. Bao is a lightweight, open-source embedded hypervisor 

which aims at providing strong isolation and real-time guarantees. 

Similarly to Jailhouse, it is a partitioning hypervisor leveraging 

hardware virtualization support; unlike Jailhouse, it is completely 

self-sufficient, not depending on Linux. Currently supporting 

ARMv8 and RISC-V, Bao was developed from scratch to provide 

a minimal clean-slate and industry-grade solution and to engage 

both academia and industry in tackling the challenges of modern 

automotive and industrial systems. 
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I.  INTRODUCTION 

Virtualization is already a well-established technology in 
enabling supervised mixed-criticality in modern high-
performance embedded systems. Its ubiquity has been 
established in fields such as automotive and industrial 
automation as these are pushing towards a consolidation of 
multiple subsystems while meeting increasingly tight size, 
weight, power and cost (SwAP-C) constraints. 

In the open-source arena, hypervisors such as KVM [1] or 
Xen [2] are the go-to solutions. Originally designed targeting the 
server domain, these hypervisors have been successfully ported 
to embedded architectures (mainly Arm [3][4]). However, they 
are not fully suited for the tight embedded constraints and real-
time requirements as support for them was implemented as an 
add-on and not by design. Furthermore, from a security and 
safety standpoint, they comprise large trusted computing bases 
(TCBs) as they often depend on large monolithic operating 
systems (OSes), typically Linux, running on privileged virtual 
machines (VMs) which management services for the remaining 
VMs. For example,  Xen relies on a privileged VM, called 
Dom0, to manage non-privileged VMs (DomUs) and interface 
with peripherals. Moreover, these hypervisors frequently 
provide a rich set of virtualization services (e.g. virtual 
networks) through emulation or para-virtualization mechanisms, 

increasing the number of hypercalls and resulting in a bloated 
TCB and wide attack surface [5].  

Recently, the static partitioning hypervisor architecture, a 
design recently best embodied by Siemens’ Jailhouse [6], has 
emerged as a viable solution to meet the needs of modern mixed-
criticality systems. This architecture follows a minimalist 
approach, similar to separation kernels. It statically partitions all 
system resources (i.e., memory, peripherals and CPUs) at 
initialization time, by directly and exclusively assigning each 
one to a single partition. The practically nonexistent runtime 
memory allocation and the physical-to-virtual CPU assignment 
through a 1:1 mapping, preclude the need for a virtual CPU 
scheduler. In addition, by leveraging hardware virtualization 
extensions (available on the majority of modern processor 
architectures), this approach results in a minimal TCB and 
virtualization overhead (e.g. VM interrupt latency, VM boot 
time). Despite its design philosophy, Jailhouse stills incurs on 
some of the drawbacks of other hypervisors, by depending on a 
privileged Linux VM, its “root cell”, to boot the system and 
manage other “cells”. Nevertheless, given the proven benefits of 
such an approach, other hypervisors are being extended to 
provide similar features and benefits. Recently, efforts headed 
by Xilinx, endowed Xen with Dom0-less execution support [7], 
allowing VMs to directly access peripherals, boot without Dom0 
(drastically reducing boot time), or completely discard it, 
resulting in full-blown static partitioning.  

In spite of the high degree of isolation and determinism 
guarantees provided by the static partitioning architecture, there 
are still safety and security issues not addressed by this design. 
First, in the past few years, the research community has 
highlighted a number of microarchitectural structures (e.g. last-
level caches – LLCs, memory controllers) that remain shared. 
These act as contention points and implicitly give rise to timing 
side-channels, compromising (i) determinism, by increasing 
jitter on access to such resources, (ii) confidentiality, through 
common cache attack techniques (e.g. Prime+Probe), and (iii) 
availability, as they make VMs susceptible to denial-of-service 
(DoS) attacks by comprised guests [8]. Cache partitioning 
techniques (e.g. cache coloring) or memory bandwidth 
reservations have been proposed to mitigate these issues and 
implemented in hypervisors showing promising results [9][10]. 
Second, static partitioning does not directly support multiple 
isolated trusted execution environments (TEEs), without 
explicitly dedicating physical CPUs to execute them. TEEs are 



an essential component in modern high-performance embedded 
systems running user-facing OSes such as Android. As TEEs are 
typically supported by hardware security technologies such as 
Arm’s TrustZone [11], many solutions have been proposed to in 
some way virtualize the so-called, secure world [12][13]. 
However, given the prevailing security vulnerabilities in 
TrustZone-based TEEs [14] suggest this dual-world hardware-
enforced isolation is not, per se, an end-all solution. Also, it does 
not seem to be an inherently more secure approach than using 
dedicated normal world VMs to execute trusted services. This is 
the approach followed by Hafnium [15], a security-focused 
hypervisor targeting Android on IoT and mobile devices. 
Hafnium supports a single primary VM in addition to a number 
of lightweight secondary VMs, where the latter are only 
scheduled by request of the former. Secondary VMs are thought 
as isolated security domains and meant to provide services to the 
primary VM.  

In this paper, we present Bao, a from-scratch implementation 
of the static partitioning architecture. Bao was originally 
developed to serve as a minimal base scaffold to conduct 
research on, and deepen VM security. We hope that, by opening 
up Bao’s code base, we engage both academic and industry 
communities on tackling these issues. The paper starts by 
highlighting Bao’s design and implementation principles and 
then proceeds to provide a short evaluation of its TCB and 
virtualization overheads. 

II. BAO OVERVIEW 

Bao (from Mandarin Chinese "bǎohù", meaning “to 
protect”) is a security and safety-oriented, lightweight bare-
metal hypervisor. Its design targets mixed-criticality systems, 
and, as such, is centered on providing fault-containment and 
real-time behavior. Given its suitability to the target systems, 
Bao initially implements the static partitioning architecture 
(Figure 1) where resources are statically partitioned and  
exclusively assigned to each VM: (i) memory is allocated only 
at initialization time; (ii) guest IO is pass-through only; (iii) 
virtual interrupts are directly mapped to physical ones; and (iv) 
virtual CPUs (vCPUs) are assigned to physical CPUs (pCPUs) 
following a 1:1 mapping, precluding the need for a scheduler. 
As in such systems VMs often have the need to interact with 
each other, the hypervisor also provides simple primitives for 
inter-VM communication. This mechanism is based on a static 
shared memory and asynchronous notifications in the form of 
inter-VM interrupts triggered through an hypercall. 
Furthermore, and similarly to Hafnium, Bao extends static 
partitioning to allow multiple vCPUs to execute isolated security 
functionality in the same pCPU although maintain the 
partitioning semantics between different criticality subsystems 
(see Section II.C). Besides standard platform management 
firmware, Bao has no dependency on external libraries or on 
privileged VMs running untrustable, large monolithic OSes. 

A. Design and Implementation Principles 

Bao is designed around a core set of principles which guide its 

implementation and future direction: 

 

1. Minimality and Simplicity. The code base strives to be as 

minimal and simple as possible. As such, Bao is 

implemented only in architectures which provide 

hardware-assisted virtualization. Taking advantage of 

mechanisms such as guest-dedicated privilege levels, 2-

stage address translation, and IOMMU support, precludes 

the use of high-overhead and complex techniques such as 

trap-and-emulation and shadow-page tables. This 

significantly reduces virtualization overheads and the 

system’s TCB by minimizing code size and complexity. 

This principle is also applied to Bao’s hypercall interface 

which should only provide essential services, with low 

complexity semantics. 

2. Least Privilege.  The implementation strives to ensure that 

each component in the system has access only to what it 

absolutely must.  Each core has a private address space, 

only mapping the physical pages it needs. As such, each 

core only maps the VM and vCPU structures it hosts, not 

being able to access VM information belonging to different 

partitions. More importantly, the hypervisor is not able to 

directly access VM physical memory which mandates that 

all hypercall arguments passed by value in processor 

registers and never by reference. Finally, only the essential 

virtualization mechanisms execute at the hypervisor’s 

privilege mode, and all other functionality must be 

migrated to VMs. 

3. Thorough Isolation. Despite the straightforward logical 

isolation provided by static virtualization, VMs still 

interact through shared micro-architectural state. One of 

Bao’s main goals is to implement mechanisms to tackle 

this issue. As a first step, and given the simplicity of the 

mechanism, cache-coloring is ingrained in the hypervisor’s 

physical page allocation mechanism which takes into 

account the colors assigned to a given VM. Also, the 

hypervisor itself can be configured to only use certain 

colors. However, this technique has several drawbacks 

including, for example, memory fragmentation.  

B. Platform Support 

Bao targets only 64-bit architectures. It currently supports 
Armv8. RISC-V experimental support is also available but, 
since it depends on the hypervisor extensions, which are not yet 
ratified, no silicon is available that can run the hypervisor. 

 
Figure 1. Bao Static Partitioning Architecture featuring a dual-guest 

configuration, 
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Consequently, the RISC-V port was only deployed on the 
QEMU emulator, which implements the latest version of the 
draft specification (at the time of this writing, version 0.5). 
Focusing on Arm platforms, at the time of writing, Bao was 
ported to two Armv8 platforms: Xilinx's Zynq-US+ on the 
ZCU102/4 development board and HiSilicon's Kirin 960 on the 
Hikey 960. So far, Bao was able to host several bare-metal 
applications, the FreeRTOS and Erikav3 RTOSs, and Linux and 
Android. 

Besides simple serial drivers to enable the log output of its 
activity, Bao does not rely on platform-specific device drivers. 
To be ported to a new platform only a simple description 
detailing the number of available CPUs, available memory, and 
its location, is needed. For this reason, Bao relies on vendor-
provided firmware and/or a generic bootloader to perform low-
level hardware initialization, management, and hypervisor and 
guest image loading. On the supported Arm-based platforms, 
Bao relies on an implementation of the standard Power State 
Coordination Interface (PSCI) to perform low-level power 
control operations, further avoiding the need for platform-
dependent drivers. This has been provided by Arm Trusted 
Firmware (ATF). On such platforms, Linux itself depends on 
PSCI for CPU hot-plugging. When such guests invoke PSCI 
services, Bao merely acts as a shim and sanitizer for the call 
arguments, to guarantee the VM abstraction and isolation, 
deferring the actual operation to ATF. Although we've been able 
to boot directly from ATF, we've been also using the well-
known U-boot bootloader to load hypervisor and guest images. 

In the Arm architecture the GIC (Generic Interrupt 
Controller) is the main interrupt arbiter and router, which is 
composed by a central distributor and per-CPU interfaces.  In 
the currently supported platforms, the available GICv2 provides 
some virtualization support. However, all interrupts are still 
forward to the hypervisor, which must re-inject the interrupt in 
the target VM. Furthermore, although the CPU interfaces are 
completely virtualized by the hardware, access to the distributor 
must be achieved using a trap-and-emulation approach. The 
newer GICv4 will provide direct interrupt delivery to VMs. 
Another peripheral essential for virtualization is the SMMU 
(Arm’s IOMMU). The SMMUv2 available in the supported 
platforms has several limitations: a limited of currently active 
stream translation registers which limits the number of 
simultaneously active DMA-capable devices. Although multiple 
devices can be grouped in one of these registers, these groupings 
cannot be arbitrary. It would be possible to context-switch these 
registers as peripherals issued memory transactions, but this 
goes against the static nature of resource distribution, and would 
increase code complexity and severely hurt determinism (as it 
would be a shared hardware structure). Keeping it simplicity 
philosophy, at initialization time, Bao checks if the existing 
number of available registers is sufficient to fulfill the device 
assignment defined in the configuration, halting if this is not 
possible. Newer versions of the SMMU spec address these 
shortcomings. 

C. TEE Support 

Bao expands on the static partitioning architecture by 
allowing a N:1 mapping of virtual to physical CPUs, although 
a vCPU is always pinned to a single pCPU. For each VM in the 

configuration, it is possible to define a set of auxiliary VM. 
Auxiliary VMs are meant to allow multiple isolated 
environments to execute in a single hardware partition. To keep 
in line with its minimality design principal, no scheduler is 
added: a vCPU is only scheduled when a currently active vCPU 
explicitly invokes of one of its auxiliary VMs and, later, the 
invoked vCPU can yield execution only to its caller. Both 
operations are issued through two simple hypercalls with very 
low-level semantics. Further, no vCPU migration exists: only 
vCPUs assigned to the same pCPU can be invoked. We call this 
process vCPU or VM stacking, as vCPUs are “scheduled” in a 
FIFO fashion, in the same way stack frames are created and 
destroyed on the stack during procedure call and returns. 
Furthermore, while a given vCPU is executing, if an interrupt 
targeting a vCPU deeper in the stack is triggered, the stack is 
unwound, immediately handling execution to the target vCPU. 
This mechanism effectively builds multiple levels of privilege 
inside a single partition, as a VM can always preempt its 
auxiliary VMs. 

Note that Bao distributes pCPUs to a set of “root” VMs 
during system initialization and effectively partitions the 
available CPUs as typical of static partitioning hypervisors. To 
clarify, if a quad-core system is configured to execute an RTOS 
in one of the cores, while running a GPOS and an isolated TEE 
in the remaining cores, using this mechanism, the RTOS is not 
affected by it and its physical core is always fully dedicated to 
this guest. Furthermore, note that, by default, even VMs in the 
same partition do not share memory. This can be accomplished 
using the same shared memory mechanism available for inter-
partition communication. 

VM-stacking allows the execution of widely-used TEEs such 
as OP-TEE with little to no modifications, depending on how 
the VM hierarchy is structured. As shown in Figure 3, the first 
option consists in using a “monitor” VM scheduling both the 
OS and TEE VMs mimicking the dual-world architecture of 
TrustZone. A second option illustrated in Figure 2 would be to 
have a higher privilege TEE VM, while the OS would use the 
yield hypercall to invoke secure services. 

 
Figure 3. TEE support mimicking TrustZone’s dual-world model. 
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Figure 2. TEE support using a higher privilege TEE VM. 

 



III. EVALUATION 

This evaluation targeted the Xilinx ZCU104 board, featuring 
a Zynq-US+ SoC with a quad-core Cortex-A53 running at 1.2 
GHz, per-core 32K L1 data and instruction caches, and a shared 
unified 1MB L2/LLC cache. Bao was compiled using the Arm 
GNU Toolchain version 8.2.1 with -O2 optimizations. 

A. Trusted Computing Base 

We evaluate  the TCB using source lines of code (sLoC) and 
binary size as metrics. Table I shows the number of C, assembly, 
and total lines of code. Table II shows the final binary size, by 
section, for building Bao for the target platform. The total ~5.6 
KSLoC and ~59 KiB final binary reflect the low complexity and 
small TCB achieved by Bao’s implementation. 

TABLE I. Source Lines of Code (SLoC) 

C Assembly Total 

5154 447 5601 

 

TABLE II. Binary Size (bytes) 

.text .data .bss .rodata total 

39956 1192 17045 1341 59535 

 

B. Performance Overhead 

The MiBench Embedded Benchmark Suite [16] automotive 
subset was used to evaluate the virtualization performance 
overhead of a Linux guest running over Bao. Figure 5 shows the 
obtained results. The resulting overheads range from negligible 
to a maximum of about 2%. Given the simplicity of the 
implemented virtualization mechanisms, we believe these 
overheads are mainly due to 2-stage address translation. 

C. Interrupt Latency 

To measure interrupt latency, we use a custom bare-metal 
guest which continuously calculates the delay observed on a 
timer interrupt programmed at a frequency of 100 Hz. 
Comparing native to hosted executions, Table III shows that the 
average latency increases by about 430 ns and standard-
deviation by about 40.5 ns. This shows the significant overhead 
that is imposed by GICv2 given the mandatory interrupt re-

injection. Furthermore, worst-case latency is also significantly 
increased. As this value was observed only on the first 
measurement of our experiments, we believe this is the results 
of compulsory cache misses on the instruction cache for the 
hypervisor code used to inject the interrupt, which suggests that 
other guest execution might significantly affect a VM interrupt 
latency by forcing the eviction of these cache lines. Although we 
have not yet verified this empirically, we believe by using cache 
coloring to dedicate a cache partition to the hypervisor, this 
effect can be minimized. 

TABLE III. Interrupt Latency (ns) 

 Average Std. Dev. Min. Max. 

Native 140.4 11.1 140.0 490.0 

Hosted 571.64 50.63 560.0 2170.0 

 

D. Interference 

To verify the correctness and effectiveness of the cache 
coloring mechanism on avoiding VM interference through the 
LLC, we take a security perspective and employ a simple cache 
Prime+Probe from one of the VMs, while varying the number 
of cache lines accessed by a “victim” VM. Figure 4 depicts the 
channel matrix [17] for the assessed channel. This heat map 
represents the probability for measuring a given probe time, 
when a certain number of cache lines is accessed. The observed 
diagonal trend shows that the number of lines accessed by the 
victim can easily be inferred given the probe time. 

We repeat the experiment with coloring enabled, assigning 

half the LLC to each of the VMs. The results Figure 6 presents 

the resulting channel matrix which shows no variation on the 

probe time, independently of the number of lines accessed by 

the victim. This confirms the effectiveness of cache coloring in 

partitioning the LLC and avoiding information leakage between 

VMs through the it. 

 
Figure 4. Last-level cache channel matrix between two VMs with no cache 

partitioning. 

 

 
Figure 6. Last-level cache channel matrix between two VMs with cache 
partitioning through coloring enabled. 

 

 
Figure 5. Performance Virtualization Overheads on the MiBench 

Automotive Benchmarks. 
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IV. CONCLUSION 

In this paper, we have presented Bao, a from-scratch 

implementation of the static partitioning hypervisor. Our 

evaluation shows that Bao encompasses a small TCB and low-

degree of virtualization overhead. Furthermore, it features 

cache partitioning mechanisms and we plan to expand it to 

address other known, or possibly uncovered, sources of 

contention. It also supports the execution of multiple isolated 

TEEs of each of the main guest OSes. Bao source code is open 

[18] in hopes of engaging both the academic and industrial 

communities in tackling the challenges of virtual machine 

isolation in modern high-end embedded systems. 
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