
www.embedded-world.eu

Bao: a modern lightweight embedded hypervisor

José Martins

Universidade do Minho

Guimarães, Portugal

jose.martins@dei.uminho.pt

Sandro Pinto

Universidade do Minho

Guimarães, Portugal

sandro.pinto@dei.uminho.pt

Abstract—Virtualization is already a key-enabling technology

for mixed-criticality embedded systems. Open-source hypervisors

such as KVM or Xen were not originally tailored for embedded

constraints and real-time requirements, and depend on Linux,

resulting in large TCBs and wide attack-surfaces. Furthermore,

they do not address the numerous microarchitectural contention

points and side-channels that have been shown to break true VM

isolation. Bao is a lightweight, open-source embedded hypervisor

which aims at providing strong isolation and real-time guarantees.

Similarly to Jailhouse, it is a partitioning hypervisor leveraging

hardware virtualization support; unlike Jailhouse, it is completely

self-sufficient, not depending on Linux. Currently supporting

ARMv8 and RISC-V, Bao was developed from scratch to provide

a minimal clean-slate and industry-grade solution and to engage

both academia and industry in tackling the challenges of modern

automotive and industrial systems.

Keywords— Virtualization, separation, hypervisor, static

partitioning, safety, security, real-time, embedded systems, Arm,

RISC-V.

I. INTRODUCTION

Virtualization is already a well-established technology in
enabling supervised mixed-criticality in modern high-
performance embedded systems. Its ubiquity has been
established in fields such as automotive and industrial
automation as these are pushing towards a consolidation of
multiple subsystems while meeting increasingly tight size,
weight, power and cost (SwAP-C) constraints.

In the open-source arena, hypervisors such as KVM [1] or
Xen [2] are the go-to solutions. Originally designed targeting the
server domain, these hypervisors have been successfully ported
to embedded architectures (mainly Arm [3][4]). However, they
are not fully suited for the tight embedded constraints and real-
time requirements as support for them was implemented as an
add-on and not by design. Furthermore, from a security and
safety standpoint, they comprise large trusted computing bases
(TCBs) as they often depend on large monolithic operating
systems (OSes), typically Linux, running on privileged virtual
machines (VMs) which management services for the remaining
VMs. For example, Xen relies on a privileged VM, called
Dom0, to manage non-privileged VMs (DomUs) and interface
with peripherals. Moreover, these hypervisors frequently
provide a rich set of virtualization services (e.g. virtual
networks) through emulation or para-virtualization mechanisms,

increasing the number of hypercalls and resulting in a bloated
TCB and wide attack surface [5].

Recently, the static partitioning hypervisor architecture, a
design recently best embodied by Siemens’ Jailhouse [6], has
emerged as a viable solution to meet the needs of modern mixed-
criticality systems. This architecture follows a minimalist
approach, similar to separation kernels. It statically partitions all
system resources (i.e., memory, peripherals and CPUs) at
initialization time, by directly and exclusively assigning each
one to a single partition. The practically nonexistent runtime
memory allocation and the physical-to-virtual CPU assignment
through a 1:1 mapping, preclude the need for a virtual CPU
scheduler. In addition, by leveraging hardware virtualization
extensions (available on the majority of modern processor
architectures), this approach results in a minimal TCB and
virtualization overhead (e.g. VM interrupt latency, VM boot
time). Despite its design philosophy, Jailhouse stills incurs on
some of the drawbacks of other hypervisors, by depending on a
privileged Linux VM, its “root cell”, to boot the system and
manage other “cells”. Nevertheless, given the proven benefits of
such an approach, other hypervisors are being extended to
provide similar features and benefits. Recently, efforts headed
by Xilinx, endowed Xen with Dom0-less execution support [7],
allowing VMs to directly access peripherals, boot without Dom0
(drastically reducing boot time), or completely discard it,
resulting in full-blown static partitioning.

In spite of the high degree of isolation and determinism
guarantees provided by the static partitioning architecture, there
are still safety and security issues not addressed by this design.
First, in the past few years, the research community has
highlighted a number of microarchitectural structures (e.g. last-
level caches – LLCs, memory controllers) that remain shared.
These act as contention points and implicitly give rise to timing
side-channels, compromising (i) determinism, by increasing
jitter on access to such resources, (ii) confidentiality, through
common cache attack techniques (e.g. Prime+Probe), and (iii)
availability, as they make VMs susceptible to denial-of-service
(DoS) attacks by comprised guests [8]. Cache partitioning
techniques (e.g. cache coloring) or memory bandwidth
reservations have been proposed to mitigate these issues and
implemented in hypervisors showing promising results [9][10].
Second, static partitioning does not directly support multiple
isolated trusted execution environments (TEEs), without
explicitly dedicating physical CPUs to execute them. TEEs are

an essential component in modern high-performance embedded
systems running user-facing OSes such as Android. As TEEs are
typically supported by hardware security technologies such as
Arm’s TrustZone [11], many solutions have been proposed to in
some way virtualize the so-called, secure world [12][13].
However, given the prevailing security vulnerabilities in
TrustZone-based TEEs [14] suggest this dual-world hardware-
enforced isolation is not, per se, an end-all solution. Also, it does
not seem to be an inherently more secure approach than using
dedicated normal world VMs to execute trusted services. This is
the approach followed by Hafnium [15], a security-focused
hypervisor targeting Android on IoT and mobile devices.
Hafnium supports a single primary VM in addition to a number
of lightweight secondary VMs, where the latter are only
scheduled by request of the former. Secondary VMs are thought
as isolated security domains and meant to provide services to the
primary VM.

In this paper, we present Bao, a from-scratch implementation
of the static partitioning architecture. Bao was originally
developed to serve as a minimal base scaffold to conduct
research on, and deepen VM security. We hope that, by opening
up Bao’s code base, we engage both academic and industry
communities on tackling these issues. The paper starts by
highlighting Bao’s design and implementation principles and
then proceeds to provide a short evaluation of its TCB and
virtualization overheads.

II. BAO OVERVIEW

Bao (from Mandarin Chinese "bǎohù", meaning “to
protect”) is a security and safety-oriented, lightweight bare-
metal hypervisor. Its design targets mixed-criticality systems,
and, as such, is centered on providing fault-containment and
real-time behavior. Given its suitability to the target systems,
Bao initially implements the static partitioning architecture
(Figure 1) where resources are statically partitioned and
exclusively assigned to each VM: (i) memory is allocated only
at initialization time; (ii) guest IO is pass-through only; (iii)
virtual interrupts are directly mapped to physical ones; and (iv)
virtual CPUs (vCPUs) are assigned to physical CPUs (pCPUs)
following a 1:1 mapping, precluding the need for a scheduler.
As in such systems VMs often have the need to interact with
each other, the hypervisor also provides simple primitives for
inter-VM communication. This mechanism is based on a static
shared memory and asynchronous notifications in the form of
inter-VM interrupts triggered through an hypercall.
Furthermore, and similarly to Hafnium, Bao extends static
partitioning to allow multiple vCPUs to execute isolated security
functionality in the same pCPU although maintain the
partitioning semantics between different criticality subsystems
(see Section II.C). Besides standard platform management
firmware, Bao has no dependency on external libraries or on
privileged VMs running untrustable, large monolithic OSes.

A. Design and Implementation Principles

Bao is designed around a core set of principles which guide its

implementation and future direction:

1. Minimality and Simplicity. The code base strives to be as

minimal and simple as possible. As such, Bao is

implemented only in architectures which provide

hardware-assisted virtualization. Taking advantage of

mechanisms such as guest-dedicated privilege levels, 2-

stage address translation, and IOMMU support, precludes

the use of high-overhead and complex techniques such as

trap-and-emulation and shadow-page tables. This

significantly reduces virtualization overheads and the

system’s TCB by minimizing code size and complexity.

This principle is also applied to Bao’s hypercall interface

which should only provide essential services, with low

complexity semantics.

2. Least Privilege. The implementation strives to ensure that

each component in the system has access only to what it

absolutely must. Each core has a private address space,

only mapping the physical pages it needs. As such, each

core only maps the VM and vCPU structures it hosts, not

being able to access VM information belonging to different

partitions. More importantly, the hypervisor is not able to

directly access VM physical memory which mandates that

all hypercall arguments passed by value in processor

registers and never by reference. Finally, only the essential

virtualization mechanisms execute at the hypervisor’s

privilege mode, and all other functionality must be

migrated to VMs.

3. Thorough Isolation. Despite the straightforward logical

isolation provided by static virtualization, VMs still

interact through shared micro-architectural state. One of

Bao’s main goals is to implement mechanisms to tackle

this issue. As a first step, and given the simplicity of the

mechanism, cache-coloring is ingrained in the hypervisor’s

physical page allocation mechanism which takes into

account the colors assigned to a given VM. Also, the

hypervisor itself can be configured to only use certain

colors. However, this technique has several drawbacks

including, for example, memory fragmentation.

B. Platform Support

Bao targets only 64-bit architectures. It currently supports
Armv8. RISC-V experimental support is also available but,
since it depends on the hypervisor extensions, which are not yet
ratified, no silicon is available that can run the hypervisor.

Figure 1. Bao Static Partitioning Architecture featuring a dual-guest

configuration,

www.embedded-world.eu

Consequently, the RISC-V port was only deployed on the
QEMU emulator, which implements the latest version of the
draft specification (at the time of this writing, version 0.5).
Focusing on Arm platforms, at the time of writing, Bao was
ported to two Armv8 platforms: Xilinx's Zynq-US+ on the
ZCU102/4 development board and HiSilicon's Kirin 960 on the
Hikey 960. So far, Bao was able to host several bare-metal
applications, the FreeRTOS and Erikav3 RTOSs, and Linux and
Android.

Besides simple serial drivers to enable the log output of its
activity, Bao does not rely on platform-specific device drivers.
To be ported to a new platform only a simple description
detailing the number of available CPUs, available memory, and
its location, is needed. For this reason, Bao relies on vendor-
provided firmware and/or a generic bootloader to perform low-
level hardware initialization, management, and hypervisor and
guest image loading. On the supported Arm-based platforms,
Bao relies on an implementation of the standard Power State
Coordination Interface (PSCI) to perform low-level power
control operations, further avoiding the need for platform-
dependent drivers. This has been provided by Arm Trusted
Firmware (ATF). On such platforms, Linux itself depends on
PSCI for CPU hot-plugging. When such guests invoke PSCI
services, Bao merely acts as a shim and sanitizer for the call
arguments, to guarantee the VM abstraction and isolation,
deferring the actual operation to ATF. Although we've been able
to boot directly from ATF, we've been also using the well-
known U-boot bootloader to load hypervisor and guest images.

In the Arm architecture the GIC (Generic Interrupt
Controller) is the main interrupt arbiter and router, which is
composed by a central distributor and per-CPU interfaces. In
the currently supported platforms, the available GICv2 provides
some virtualization support. However, all interrupts are still
forward to the hypervisor, which must re-inject the interrupt in
the target VM. Furthermore, although the CPU interfaces are
completely virtualized by the hardware, access to the distributor
must be achieved using a trap-and-emulation approach. The
newer GICv4 will provide direct interrupt delivery to VMs.
Another peripheral essential for virtualization is the SMMU
(Arm’s IOMMU). The SMMUv2 available in the supported
platforms has several limitations: a limited of currently active
stream translation registers which limits the number of
simultaneously active DMA-capable devices. Although multiple
devices can be grouped in one of these registers, these groupings
cannot be arbitrary. It would be possible to context-switch these
registers as peripherals issued memory transactions, but this
goes against the static nature of resource distribution, and would
increase code complexity and severely hurt determinism (as it
would be a shared hardware structure). Keeping it simplicity
philosophy, at initialization time, Bao checks if the existing
number of available registers is sufficient to fulfill the device
assignment defined in the configuration, halting if this is not
possible. Newer versions of the SMMU spec address these
shortcomings.

C. TEE Support

Bao expands on the static partitioning architecture by
allowing a N:1 mapping of virtual to physical CPUs, although
a vCPU is always pinned to a single pCPU. For each VM in the

configuration, it is possible to define a set of auxiliary VM.
Auxiliary VMs are meant to allow multiple isolated
environments to execute in a single hardware partition. To keep
in line with its minimality design principal, no scheduler is
added: a vCPU is only scheduled when a currently active vCPU
explicitly invokes of one of its auxiliary VMs and, later, the
invoked vCPU can yield execution only to its caller. Both
operations are issued through two simple hypercalls with very
low-level semantics. Further, no vCPU migration exists: only
vCPUs assigned to the same pCPU can be invoked. We call this
process vCPU or VM stacking, as vCPUs are “scheduled” in a
FIFO fashion, in the same way stack frames are created and
destroyed on the stack during procedure call and returns.
Furthermore, while a given vCPU is executing, if an interrupt
targeting a vCPU deeper in the stack is triggered, the stack is
unwound, immediately handling execution to the target vCPU.
This mechanism effectively builds multiple levels of privilege
inside a single partition, as a VM can always preempt its
auxiliary VMs.

Note that Bao distributes pCPUs to a set of “root” VMs
during system initialization and effectively partitions the
available CPUs as typical of static partitioning hypervisors. To
clarify, if a quad-core system is configured to execute an RTOS
in one of the cores, while running a GPOS and an isolated TEE
in the remaining cores, using this mechanism, the RTOS is not
affected by it and its physical core is always fully dedicated to
this guest. Furthermore, note that, by default, even VMs in the
same partition do not share memory. This can be accomplished
using the same shared memory mechanism available for inter-
partition communication.

VM-stacking allows the execution of widely-used TEEs such
as OP-TEE with little to no modifications, depending on how
the VM hierarchy is structured. As shown in Figure 3, the first
option consists in using a “monitor” VM scheduling both the
OS and TEE VMs mimicking the dual-world architecture of
TrustZone. A second option illustrated in Figure 2 would be to
have a higher privilege TEE VM, while the OS would use the
yield hypercall to invoke secure services.

Figure 3. TEE support mimicking TrustZone’s dual-world model.

F

Figure 2. TEE support using a higher privilege TEE VM.

III. EVALUATION

This evaluation targeted the Xilinx ZCU104 board, featuring
a Zynq-US+ SoC with a quad-core Cortex-A53 running at 1.2
GHz, per-core 32K L1 data and instruction caches, and a shared
unified 1MB L2/LLC cache. Bao was compiled using the Arm
GNU Toolchain version 8.2.1 with -O2 optimizations.

A. Trusted Computing Base

We evaluate the TCB using source lines of code (sLoC) and
binary size as metrics. Table I shows the number of C, assembly,
and total lines of code. Table II shows the final binary size, by
section, for building Bao for the target platform. The total ~5.6
KSLoC and ~59 KiB final binary reflect the low complexity and
small TCB achieved by Bao’s implementation.

TABLE I. Source Lines of Code (SLoC)

C Assembly Total

5154 447 5601

TABLE II. Binary Size (bytes)

.text .data .bss .rodata total

39956 1192 17045 1341 59535

B. Performance Overhead

The MiBench Embedded Benchmark Suite [16] automotive
subset was used to evaluate the virtualization performance
overhead of a Linux guest running over Bao. Figure 5 shows the
obtained results. The resulting overheads range from negligible
to a maximum of about 2%. Given the simplicity of the
implemented virtualization mechanisms, we believe these
overheads are mainly due to 2-stage address translation.

C. Interrupt Latency

To measure interrupt latency, we use a custom bare-metal
guest which continuously calculates the delay observed on a
timer interrupt programmed at a frequency of 100 Hz.
Comparing native to hosted executions, Table III shows that the
average latency increases by about 430 ns and standard-
deviation by about 40.5 ns. This shows the significant overhead
that is imposed by GICv2 given the mandatory interrupt re-

injection. Furthermore, worst-case latency is also significantly
increased. As this value was observed only on the first
measurement of our experiments, we believe this is the results
of compulsory cache misses on the instruction cache for the
hypervisor code used to inject the interrupt, which suggests that
other guest execution might significantly affect a VM interrupt
latency by forcing the eviction of these cache lines. Although we
have not yet verified this empirically, we believe by using cache
coloring to dedicate a cache partition to the hypervisor, this
effect can be minimized.

TABLE III. Interrupt Latency (ns)

 Average Std. Dev. Min. Max.

Native 140.4 11.1 140.0 490.0

Hosted 571.64 50.63 560.0 2170.0

D. Interference

To verify the correctness and effectiveness of the cache
coloring mechanism on avoiding VM interference through the
LLC, we take a security perspective and employ a simple cache
Prime+Probe from one of the VMs, while varying the number
of cache lines accessed by a “victim” VM. Figure 4 depicts the
channel matrix [17] for the assessed channel. This heat map
represents the probability for measuring a given probe time,
when a certain number of cache lines is accessed. The observed
diagonal trend shows that the number of lines accessed by the
victim can easily be inferred given the probe time.

We repeat the experiment with coloring enabled, assigning

half the LLC to each of the VMs. The results Figure 6 presents

the resulting channel matrix which shows no variation on the

probe time, independently of the number of lines accessed by

the victim. This confirms the effectiveness of cache coloring in

partitioning the LLC and avoiding information leakage between

VMs through the it.

Figure 4. Last-level cache channel matrix between two VMs with no cache

partitioning.

Figure 6. Last-level cache channel matrix between two VMs with cache
partitioning through coloring enabled.

Figure 5. Performance Virtualization Overheads on the MiBench

Automotive Benchmarks.

59.17 ms

195.69 ms

17.96 ms

221.79 ms

21.20 ms

299.16 ms

1.89 ms

15.17 ms

2.38 ms

33.08 ms

20.54 ms

294.12 ms

59.32 ms

195.81 ms

18.31 ms

222.36 ms

21.28 ms

299.27 ms

1.93 ms

15.40 ms

2.40 ms

33.33 ms

20.65 ms

294.19 ms

basicmath_small

basicmath_large

qsort_small

qsort_large

bitcount_small

bitcount_large

susanc_small

susanc_large

susane_small

susane_large

susans_small

susans_large

0.99 0.995 1 1.005 1.01 1.015 1.02

Relative Performance Overhead

Hosted

Native

www.embedded-world.eu

IV. CONCLUSION

In this paper, we have presented Bao, a from-scratch

implementation of the static partitioning hypervisor. Our

evaluation shows that Bao encompasses a small TCB and low-

degree of virtualization overhead. Furthermore, it features

cache partitioning mechanisms and we plan to expand it to

address other known, or possibly uncovered, sources of

contention. It also supports the execution of multiple isolated

TEEs of each of the main guest OSes. Bao source code is open

[18] in hopes of engaging both the academic and industrial

communities in tackling the challenges of virtual machine

isolation in modern high-end embedded systems.

ACKNOWLEDGMENTS

José Martins has been supported by FCT grant

SFRH/BD/138660/2018. We would like to thank the people of

HipertLab (Università di Modena e Reggio Emilia, Italy),

especially Marko Bertogna, Marco Solieri, and Angelo Ruocco

for their valuable input and assistance in Bao’s development.

REFERENCES

[1] U. Lublin, Y. Kamay, D. Laor, and A. Liguori. KVM: the Linux virtual
machine monitor. In Proceedings of the Linux Symposium, 2007.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield. Xen and the Art of Virtualization.
In Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, SOSP ’03, New York, NY, USA, 2003.

[3] J. Hwang, S. Suh, S. Heo, C. Park, J. Ryu, S. Park, and C. Kim. Xen on
ARM: System Virtualization Using Xen Hypervisor for ARM-Based
Secure Mobile Phones. In IEEE Consumer Communications and
Networking Conference, pages 257–261, 2008.

[4] C. Dall and J. Nieh. KVM/ARM: the design and implementation of the
linux ARM hypervisor. In ACM SIGARCH Computer Architecture
News, vol. 42, no. 1, pp. 333-348. ACM, 2014.

[5] D. G. Murray, G. Milos, and S. Hand. Improving Xen Security Through
Disaggregation. In Proceedings of the Fourth ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, VEE ’08,
pages 151–160, New York, NY, USA, 2008. ACM.

[6] R. Ramsauer, J. Kiszka, D. Lohmann, and W. Mauerer. Look Mum, no
VM Exits!(Almost). In Workshop on Operating Systems Platforms for
Embedded Real-Time Applications (OSPERT), 2017.

[7] S. Stabellini. True Static Partitioning With Xen Dom0-Less. Xen Project.
2020. URL: https://xenproject.org/2019/12/16/true-static-partitioning-
with-xen-dom0-less/.

[8] Q. Ge, Y. Yarom, D. Cock, and G. Heiser. A Survey of Microarchitectural
Timing Attacks and Countermeasures on Contemporary Hardware. In
Journal of Cryptographic Engineering 8:1–27, 2018.

[9] T. Kloda, M. Solieri, R. Mancuso, N. Capodieci, P. Valente, and M.
Bertogna. Deterministic Memory Hierarchy and Virtualization for
Modern Multi-Core Embedded Systems. In 2019 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2019.

[10] P. Modica, A. Biondi, G. Buttazzo, and A. Patel. Supporting temporal and
spatial isolation in a hypervisor for ARM multicore platforms. In 2018
IEEE International Conference on Industrial Technology (ICIT), pages
1651–1657, 2018.

[11] S. Pinto and N. Santos. Demystifying Arm TrustZone: A Comprehensive
Survey. ACM Comput. Surv., 51(6):130:1–130:36, January 2019.

[12] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan. vTZ: Virtualizing
ARM TrustZone. In 26th USENIX Security Symposium (USENIX
Security 17), pages 541–556, Vancouver, BC, August 2017. USENIX
Association.

[13] G. Cicero, A. Biondi, G. Buttazzo, and A. Patel. Reconciling security with
virtualization: A dual-hypervisor design for ARM TrustZone. In 2018
IEEE International Conference on Industrial Technology (ICIT), pages
1628–1633, 2018.

[14] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto. SoK: Understanding the
Prevailing Security Vulnerabilities in TrustZone-assisted TEE Systems.
In IEEE Symposium on Security and Privacy (S&P), Los Alamitos, CA,
USA, to appear 2020.

[15] Hafnium. The root Hafnium repo, 2019. URL:
https://hafnium.googlesource.com/hafnium/.

[16] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown. MiBench: A free, commercially representative embedded
benchmark suite. In Proceedings of the Fourth Annual IEEE International
Workshop on Workload Characterization. WWC-4 (Cat. No.01EX538),
pages 3–14, 2001.

[17] David Cock, Qian Ge, Toby Murray, and Gernot Heiser. 2014. The Last
Mile: An Empirical Study of Timing Channels on seL4. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’14). Association for Computing
Machinery, New York, NY, USA, 57.

[18] Bao Hypervisor. Bao project repo. 2020. URL: https://github.com/bao-
project/bao-hypervisor

