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Abstract - Hardware consolidation requirements and 

sophisticated new functional requirements are forcing embedded 

systems designers to mix safety-critical applications with complex 

rich operating systems. The resulting mixed-criticality systems 

present orders of magnitude larger code base and unacceptably 

greater attack surface and system vulnerability – often exposed to 

remote attack. To address this emerging threat model, we propose 

a new zero-trust computing architecture based on the concept of 

multi zone enclaves for RISC-V based Linux systems. 
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I.  INTRODUCTION  

We live in the era of the Internet-of-Things (IoT). Billions of 
interconnected devices are now integral part of our lives, 
perform a myriad of functions, manage safety-critical 
operations, and generate and process vast amounts of sensitive 
data. As these systems are connected to the external world, they 
are inherently exposed to an endless number of cybersecurity 
threads [1, 2]. As shown by many recent high-profile 
cybersecurity incidents, the viability of this new Internet era 
heavily depends on the security of these devices and on the trust 
we are willing to put on them [2].  

At its core, the ongoing cat-and-mouse game of exploits and 
patches is largely due to the intrinsic lack of security built into 
the prevailing computing model we all learned in school [1]. 
Mainstream operating systems (OSes) such as Linux and its 
many derivatives are built on a monolithic architecture, where 
most of the services have indiscriminate privileged execution 
rights [3]. A typical example is the Linux implementation of the 
TCP/IP stack, which is integral part of the kernel and, by 
definition, exposed to remote attack – the most damaging 
category of cyber threats. Although most of these systems rely 
on virtual memory to provide some level of separation, this 
widespread technique present significant limitations: (i) it 
requires complex dedicated hardware such as a Memory 
Management Unit (MMU), (ii) it introduces a large software 
attack surface necessary to drive the MMU – Linux kernel is 
approximately 18 million lines of code and growing, and (iii) it 
only provides separation between kernel services and user-space 
applications. This very architecture makes the kernel the single 

point of failure and the main avenue for attack via privilege 
escalation and via the inevitably high number of vulnerabilities 
exposed by such gigantic attack surface [1, 3]. 

In the context of secure computing systems, security through 
separation is a well understood principle traditionally 
implemented by Trusted Execution Environments (TEE) and/or 
Hypervisor software. TEEs have historically been used to 
statically partition hardware resources into two – a “secure 
world” for secrets and critical functionality, and a “non-secure 
world” for everything else including the rich operating system 
and its userland applications - i.e. Arm TrustZone [4]. Similarly, 
Hypervisor software leverages a 2-stage MMU to virtualize 
memory spaces so that OS and its applications cannot 
accidentally or intentionally reach into each other’s code and 
data segments. Legacy TEE technology suffers from two well 
understood intrinsic limitations: (i) the limited real-world 
applicability of the antiquated “two-worlds” model and (ii) the 
overwhelming complexity of the software components 
necessary for a proper implementation, which according to 
industry experts often results in these technologies not being 
used at all. This also applies to Hypervisor software that 
introduces the vast attack surface typical of the large code base 
necessary to operate MMU and hardware support for 
virtualization. In addition, over the last few decades a number of 
security researchers have questioned the very security of these 
technologies as their work resulted in the systematic discovery 
of many critical vulnerabilities [4, 5]. 

On the same note, recent research has demonstrated how the 
very high-performance architecture (e.g., caches, branch 
prediction, out-of-order execution) of modern processors can be 
easily exploited to conduct timing side-channel attacks as well 
as to interfere with determinism, predictability, and ultimately 
with system reliability [5, 6]. Timing side-channels can be used 
to compromise data confidentiality, which might be exploited to 
access private or sensitive data of either a TEE or the Hypervisor 
[5]. In the context of mixed-criticality systems (MCSs), the 
multiplexing of micro-architectural shared resources can lead to 
reciprocal interference and contention among virtual machines 
(VMs), which can break truly temporal isolation and hinder 
determinism by increasing jitter [6]. 



We start by presenting the standard security primitives 
specified by the RISC-V ISA. We then describe why legacy TEE 
technology is unsuitable for modern embedded applications and 
explain the main components required to meet these new 
requirements. Finally, we propose a new multi zone enclave for 
RISC-V based Linux systems targeting the Microchip 
PolarFire® FPGA and the details of its implementation. 

II. RISC-V PRIMER 

Recent advances in computer architectures have brought to 
light an innovative instruction set architecture named RISC-V, 
initially developed at U.C Berkeley and now ratified by the 
RISC-V Foundation. RISC-V differs from other computer 
architectures by offering a free and open instruction set 
architecture (ISA). RISC-V has the potential to become a 
security game-changer by defining a comprehensive set of 
security building blocks in the ISA itself, which are then 
available across the board in every silicon implementation. 
Some of these features include (i) privileged execution levels, 
(ii) physical memory protection (PMP), and (iii) user-mode 
interrupt delegation. 

RISC-V Privilege Levels. The first security primitive offered 
by any RISC-V core is privilege levels. At any time, a RISC-V 
hardware thread (so-called hart), runs at a specific privilege level 
(Fig. 1). According to the current RISC-V Privileged ISA 
Specification (version 1.11) these include User/Application (U), 
Supervisor (S), and Machine (M). A fourth privilege mode, 
Hypervisor (H), is reserved and under review for ratification. 
Roughly speaking, these privilege levels are used to protect the 
different components of the software stack from each other. A 
synchronous non-maskable exception (trap) is raised if an 
instruction would result in the hart performing operations not 
permitted by the current privilege level. 

RISC-V Physical Memory Protection (PMP). A second 
security feature is the PMP filter. It allows the highest privilege 
level (M) to protect specific memory regions and to grant lower 
privilege level access only to specific contiguous memory 
regions according to read / write / execute policies. This allows 
the partition of functionality between execution environments 
and other functional component behavior. 

RISC-V User-Level Interrupts. A third relevant feature is the 
support for user-level interrupts - “N” extension. This extension 
allows the interrupt controller to delegate exception handling to 
more secure user-level handlers, bypassing the highest privilege 
level in the outer execution environment. 

III. TEE REQUIREMENTS FOR MODERN APPLICATIONS 

As requirements for embedded and IoT systems have 
become more complex, system designers increasingly rely on 
3rd party software components. These are typically available in 
the form of software libraries. In some cases, the source code is 
available for analysis and security validation – i.e. open source 
software, in some cases it is available as opaque linkable object 
modules, in some cases the source code is proprietary and 
completely hidden from scrutiny – i.e. binaries. Therefore, the 
requirement has emerged to enforce the separation, or 
firewalling, of the various software components within the 
system. However, the intrinsic complexity, code size, and attack 
surface of a rich operating system are simply unfit for the level 
of trust required in safety-critical applications. Imagine, for 
example, a simple embedded connected system that needs a 
TCP/IP stack, crypto libraries, Bluetooth stack, and a root of 
trust for secure boot and TLS operations. The complexity of each 
of these functional blocks leaves the system designer no other 
choice but to rely on a mix of more or less trusted 3rd party 
libraries [1]. 

In a traditional TEE architecture, secrets, cryptographic 
keys, certificates, and the libraries related to their functionality 
are combined into the single “secure world” available. Inside 
this world, each component is exposed and needs to trust all 
other components, de-facto breaking the zero-trust model [4, 5]. 
A single faulty instruction or software defect, intentional or 
unintentional, in one of these components has the potential to 
compromise them all [1, 3]. The second issue is complexity, 
which is the enemy of security. Embedded system developers 
are exposed to different programming models that are typically 
very different in a TEE than in a single world implementation. 
Commercial TEEs have TCBs of thousands of lines of code (and 
hundreds of KiB), with many unverified and untrusted external 
dependencies [5]. This is the main reason why TEEs are 
typically implemented only if required by the downstream 
customer. It also explains why commercial TEE 
implementations are regularly breached [4, 5]. 

We propose that a modern effective TEE must provide the 
following features: 

• An extremely limited attack surface, in the order of few 
kilobytes. Assuming a conservative 1 defect per 1,000 lines 
of code ratio, a TCB equivalent to less than 1,000 lines of 
code. 

• Completely self-contained with zero dependencies from 
libraries and other runtime components including C 
runtime, linker scripts, and kernel-mode drivers. 

• Provided in the form of a sealed pre-built runtime, driven by 
statically defined user-defined policies, that doesn’t require 
or even expose to the developer any other interface than the 
policy configuration file itself.  

• Isolation of executable code (text segments) to ensure that 
user programs run in unprivileged mode so that they can’t 
compromise the overall system integrity. 

• Isolation of data (data segments) and memory-mapped 
peripherals (typically I/O) via a hardware unit that prevents 
access outside statically defined security boundaries. 
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Fig. 1. RISC-V Privilege Levels 
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• Isolation of Interrupts so that interrupt handlers are mapped 
to the respective zone context and executed at a reduced 
level of privilege, unable to compromise the isolation 
model. 

• Isolation of cores and other microarchitectural resources 
(e.g., caches) in heterogeneous systems such that low-
criticality/non-secure core(s) cannot compromise and/or 
interfere with high-criticality/secure core(s). 

• A preemptive temporal separation mechanism to ensure that 
any single Zone cannot cause a denial of service by 
indefinitely holding processing cycles, de facto taking the 
system to a halt. This is a must for safety-critical 
applications. 

• A secure communications infrastructure to allow inter-zone 
data transfers without relying on shared memory resources 
such as buffers, stack, and heap. 

• A secure inter-processor communications infrastructure to 
allow zones running on the secure core(s) to send/receive 
data to/from other low-criticality/non-secure core(s). In this 
case, shared buffers are inevitable and should be protected 
by exclusive allocation to the parties involved in the 
communication and by policies enforcing the respective 
consumer / producer role. 

• A soft timer facility to multiplex the underlying hardware 
timer functionality to make it available to each zone 
independently from the others.  

• Wait for interrupt functionality to allow transparent support 
for system suspend and low-power states.   

• Trap and emulate functionality for privileged instructions to 
allow transparent robust implementation of existing 
application code originally designed to operate in a single 
unprotected memory space. 

• An optional C language API to expose TEE runtime services 
such as messaging and process scheduling. 

• A built-time command line utility for Linux, Windows, and 
Mac OS, fully integrated with toolchain and IDE, to 
combine and configure the zones binaries and to produce 
the signed firmware image for the secure boot of the system. 

IV. MULTI ZONE ENCLAVES 

Fig. 2 shows the system architecture of the proposed multi 
zone enclave for Linux [7]. This architecture is substantially 
different than traditional TEE architectures as it relies on a 
separated deterministic core to execute multiple trusted 
workloads alongside untrusted Linux applications. 

Note: this architecture has been ideated by Hex Five for its 
MultiZone® Security TEE, the first commercial enclave 
specifically designed to bring security and separation to RISC-
V based Linux systems – patent pending US 16/450,826 PCT 
US19/38774. 

Multi Zone Secure Boot Process. The multi zone enclave 

implements a 2-stage secure boot loader to verify the integrity 

and authenticity of the firmware image - SHA-512. The standard 

Linux boot process has been modified with the addition of the 

multi zone secure boot loader (MSBL). This is responsible for 

securely loading and booting the trusted execution environment 

runtime, the user-mode enclaves binaries, and for handling the 

execution of the four Linux-capable cores to the subsequent boot 

stages: Zero Stage Boot Loader (ZSBL), First Stage Boot Loader 

(FSBL), and Berkeley Boot Loader (BBL). ZSBL, FSBL, and 

BBL boot stages are slightly modified to enforce overall system 

security policies and to prevent any possible promiscuity of 

untrusted Linux code with the secure enclaves.      

 

Multi Zone Runtime. The multi zone runtime is comprised of 

two main components: (i) the preemptive separation kernel and 

(ii) the secure communications layer. The separation kernel 

provides time and spatial isolation across the multiple zones of 

the enclave. The kernel supports an unlimited number of 

isolated zones compliant to the policies defined in the 

configuration file by the system designer. Policies include read 

/ write / execute access control and map the various physical 

resources of the system – i.e. RAM, ROM, I/O, - and interrupt 

sources to each zone (whitelist) and core (blacklist). The 

separation kernel implements a preemptive real-time scheduler 

with configurable round-robin and / or cooperative scheduling 

policies. In addition, it provides multiplexed timer events 

emulating one timer per each zone - in spite of the availability 

of a single architectural machine timer. Interrupts handling is 

fully isolated and emulated in the context of each zone. This 

includes low-latency vectored interrupts, preemptible 

 

Fig. 2. Multi Zone Enclave For Linux - System Architecture 

 

 



interrupts, and Wait For Interrupt WFI (i.e., suspend mode). To 

provide complete and transparent support for unmodified 

binaries, the separation kernel handles trap & emulation for 

most protected instructions - i.e. CSR read-only.  

 

Multi Zone Secure Communications. Zones inside the 

deterministic core communicate to each other via an exception 

handling mechanism immune to shared memory attacks. 

Communications across the cores rely on secure split buffers 

according to the multi zone open standard API AMP/Linux 

communication protocol. This protocol is designed for 

heterogeneous systems where real-time applications run in one 

or more MCUs alongside multiple AMP or SMP Linux-capable 

CPUs. The protocol is based on four invariants. These 

invariants specify the communication data path implemented 

through a protected shared memory split buffer: one half for 

zones 1 to n inboxes and one for the zone zero (Linux) inbox. 

These inboxes follow a statically defined layout sized according 

to the number of zones present in the system. The 

communication flow specifies that access to inboxes requires 

synchronization to avoid race conditions in multi-thread / multi-

core systems.  
 

A. Reference Application 

Fig. 3 shows the reference application that we developed for 

system test and evaluation. It is designed to verify security and 

separation of a 4-zone enclave in a mixed-criticality system 

where Linux and real-time come together in a single RISC-V 

chip. The multi zone enclave is configured to run four separated 

bare metal applications (zones) fully protected from the Linux 

untrusted cores. Zone #1 and zone #2 connect to a PC terminal 

via SSH (Ethernet) to exercise and test secure connectivity, 

integration with the Linux IPC driver, enforcement of the 

isolation policies (PMP), performance statistics, soft-timer, 

interrupts, inter-processor communications. Zone #3 connects to 

a PC terminal via serial port (UART) to demonstrate peripheral 

mapping, secure user-mode drivers, enforcement of isolation 

policies, performance statistics, soft-timer, and inter-processor 

communications. Finally, Zone 4 operates a robotic arm 

connected via GPIO and blinks a heartbeat LED connected to 

the PWM hardware. Commands entered by the user via zone #1, 

#2, and #3 are dispatched via secure messaging to zone #4, 

which operates the robot’s motors and reports back its status to 

the other zones.   

 

B. Security, Separation, And Performance Evaluation 

The reference implementation was evaluated on Microchip 

PolarFire® FPGA hardware. This system embeds five RISC-V 

cores: one deterministic microcontroller RV64 IMACU plus 

four RV64 IMACFU Linux-capable CPUs. In addition to 

extensive testing of security and separation, we benchmarked 

TCB size and performance metrics. 

 

TCB Size. By design, the multi zone runtime is extremely 

small, written completely in assembly, and completely self-

contained – no C libraries or runtime. Its TCB size is 

approximately 2KiB, which allows for formal verification. 

 

Performance Overhead. To assess the performance overhead, 

we measured the zone context switch time. For the system 

under test, configured for four zones, a full context switch takes 

260 clock cycles or 260ns at the operating frequency of 1GHz. 

If configured for a preemptive tick time of 10ms, the worst-case 

performance overhead is 0.0026%.    

  

 

Fig. 3. Multi Zone Enclave for Linux – Reference Application 

 

 



www.embedded-world.eu 

 

REFERENCES 

 
[1] Chris Conlon and Cesare Garlati. “A New Zero-Trust Model for Securing 

Embedded Systems”. In Proceedings of the Embedded World 
Conference, Nuremberg, Germany, 2019. 

[2] O. Alrawi, C. Lever, M. Antonakakis and F. Monrose,  "SoK: Security 
Evaluation of Home-Based IoT Deployments." IEEE Symposium on 
Security and Privacy (SP), San Francisco, CA, USA, 2019. 

[3] Simon Biggs, Damon Lee, and Gernot Heiser. "The Jury Is In: Monolithic 
OS Design Is Flawed: Microkernel-based Designs Improve Security." In 
Proceedings of the 9th Asia-Pacific Workshop on Systems, p. 16. ACM, 
2018. 

[4] Sandro Pinto and Nuno Santos, “Demystifying Arm TrustZone: A 
Comprehensive Survey.” ACM  Computing Surveys, vol. 51, no. 6, article 
130, December 2018. 

[5] David Cerdeira, Nuno Santos, Pedro Fonseca, Sandro Pinto. " SoK: 
Understanding the Prevailing Security Vulnerabilities in TrustZone-
assisted TEE Systems." IEEE Symposium on Security and Privacy (S&P), 
San Francisco, CA, USA, 2020. 

[6] M. Bechtel and H. Yun, "Denial-of-Service Attacks on Shared Cache in 
Multicore: Analysis and Prevention," 2019 IEEE Real-Time and 
Embedded Technology and Applications Symposium (RTAS), Montreal, 
QC, Canada, 2019, pp. 357-367. 

[7] Hex Five Security Inc. “MultiZone® Security for Linux”. White Paper, 
CA, USA, 2019. [Online]: https://hex-five.com/wp-
content/uploads/2020/01/multizone-linux-datasheet-20191216.pdf 

[8] Sandro Pinto and Cesare Garlati. “User Mode Interrupts: A Must for 
Securing Embedded Systems”. In Proceedings of the Embedded World 
Conference, Nuremberg, Germany, 2019. 

 


