
www.embedded-world.eu

A Clean Slate Approach to Linux Security

RISC-V Enclaves

Cesare Garlati

Hex Five Security

Redwood City, CA, USA

cesare.garlati@hex-five.com

Sandro Pinto

Universidade do Minho

Guimarães, Portugal

sandro.pinto@dei.uminho.pt

Abstract - Hardware consolidation requirements and

sophisticated new functional requirements are forcing embedded

systems designers to mix safety-critical applications with complex

rich operating systems. The resulting mixed-criticality systems

present orders of magnitude larger code base and unacceptably

greater attack surface and system vulnerability – often exposed to

remote attack. To address this emerging threat model, we propose

a new zero-trust computing architecture based on the concept of

multi zone enclaves for RISC-V based Linux systems.

Keywords — RISC-V, Linux, Security, Separation, TEE,

enclave, mixed-criticality, safety-critical, embedded, firmware.

I. INTRODUCTION

We live in the era of the Internet-of-Things (IoT). Billions of
interconnected devices are now integral part of our lives,
perform a myriad of functions, manage safety-critical
operations, and generate and process vast amounts of sensitive
data. As these systems are connected to the external world, they
are inherently exposed to an endless number of cybersecurity
threads [1, 2]. As shown by many recent high-profile
cybersecurity incidents, the viability of this new Internet era
heavily depends on the security of these devices and on the trust
we are willing to put on them [2].

At its core, the ongoing cat-and-mouse game of exploits and
patches is largely due to the intrinsic lack of security built into
the prevailing computing model we all learned in school [1].
Mainstream operating systems (OSes) such as Linux and its
many derivatives are built on a monolithic architecture, where
most of the services have indiscriminate privileged execution
rights [3]. A typical example is the Linux implementation of the
TCP/IP stack, which is integral part of the kernel and, by
definition, exposed to remote attack – the most damaging
category of cyber threats. Although most of these systems rely
on virtual memory to provide some level of separation, this
widespread technique present significant limitations: (i) it
requires complex dedicated hardware such as a Memory
Management Unit (MMU), (ii) it introduces a large software
attack surface necessary to drive the MMU – Linux kernel is
approximately 18 million lines of code and growing, and (iii) it
only provides separation between kernel services and user-space
applications. This very architecture makes the kernel the single

point of failure and the main avenue for attack via privilege
escalation and via the inevitably high number of vulnerabilities
exposed by such gigantic attack surface [1, 3].

In the context of secure computing systems, security through
separation is a well understood principle traditionally
implemented by Trusted Execution Environments (TEE) and/or
Hypervisor software. TEEs have historically been used to
statically partition hardware resources into two – a “secure
world” for secrets and critical functionality, and a “non-secure
world” for everything else including the rich operating system
and its userland applications - i.e. Arm TrustZone [4]. Similarly,
Hypervisor software leverages a 2-stage MMU to virtualize
memory spaces so that OS and its applications cannot
accidentally or intentionally reach into each other’s code and
data segments. Legacy TEE technology suffers from two well
understood intrinsic limitations: (i) the limited real-world
applicability of the antiquated “two-worlds” model and (ii) the
overwhelming complexity of the software components
necessary for a proper implementation, which according to
industry experts often results in these technologies not being
used at all. This also applies to Hypervisor software that
introduces the vast attack surface typical of the large code base
necessary to operate MMU and hardware support for
virtualization. In addition, over the last few decades a number of
security researchers have questioned the very security of these
technologies as their work resulted in the systematic discovery
of many critical vulnerabilities [4, 5].

On the same note, recent research has demonstrated how the
very high-performance architecture (e.g., caches, branch
prediction, out-of-order execution) of modern processors can be
easily exploited to conduct timing side-channel attacks as well
as to interfere with determinism, predictability, and ultimately
with system reliability [5, 6]. Timing side-channels can be used
to compromise data confidentiality, which might be exploited to
access private or sensitive data of either a TEE or the Hypervisor
[5]. In the context of mixed-criticality systems (MCSs), the
multiplexing of micro-architectural shared resources can lead to
reciprocal interference and contention among virtual machines
(VMs), which can break truly temporal isolation and hinder
determinism by increasing jitter [6].

We start by presenting the standard security primitives
specified by the RISC-V ISA. We then describe why legacy TEE
technology is unsuitable for modern embedded applications and
explain the main components required to meet these new
requirements. Finally, we propose a new multi zone enclave for
RISC-V based Linux systems targeting the Microchip
PolarFire® FPGA and the details of its implementation.

II. RISC-V PRIMER

Recent advances in computer architectures have brought to
light an innovative instruction set architecture named RISC-V,
initially developed at U.C Berkeley and now ratified by the
RISC-V Foundation. RISC-V differs from other computer
architectures by offering a free and open instruction set
architecture (ISA). RISC-V has the potential to become a
security game-changer by defining a comprehensive set of
security building blocks in the ISA itself, which are then
available across the board in every silicon implementation.
Some of these features include (i) privileged execution levels,
(ii) physical memory protection (PMP), and (iii) user-mode
interrupt delegation.

RISC-V Privilege Levels. The first security primitive offered
by any RISC-V core is privilege levels. At any time, a RISC-V
hardware thread (so-called hart), runs at a specific privilege level
(Fig. 1). According to the current RISC-V Privileged ISA
Specification (version 1.11) these include User/Application (U),
Supervisor (S), and Machine (M). A fourth privilege mode,
Hypervisor (H), is reserved and under review for ratification.
Roughly speaking, these privilege levels are used to protect the
different components of the software stack from each other. A
synchronous non-maskable exception (trap) is raised if an
instruction would result in the hart performing operations not
permitted by the current privilege level.

RISC-V Physical Memory Protection (PMP). A second
security feature is the PMP filter. It allows the highest privilege
level (M) to protect specific memory regions and to grant lower
privilege level access only to specific contiguous memory
regions according to read / write / execute policies. This allows
the partition of functionality between execution environments
and other functional component behavior.

RISC-V User-Level Interrupts. A third relevant feature is the
support for user-level interrupts - “N” extension. This extension
allows the interrupt controller to delegate exception handling to
more secure user-level handlers, bypassing the highest privilege
level in the outer execution environment.

III. TEE REQUIREMENTS FOR MODERN APPLICATIONS

As requirements for embedded and IoT systems have
become more complex, system designers increasingly rely on
3rd party software components. These are typically available in
the form of software libraries. In some cases, the source code is
available for analysis and security validation – i.e. open source
software, in some cases it is available as opaque linkable object
modules, in some cases the source code is proprietary and
completely hidden from scrutiny – i.e. binaries. Therefore, the
requirement has emerged to enforce the separation, or
firewalling, of the various software components within the
system. However, the intrinsic complexity, code size, and attack
surface of a rich operating system are simply unfit for the level
of trust required in safety-critical applications. Imagine, for
example, a simple embedded connected system that needs a
TCP/IP stack, crypto libraries, Bluetooth stack, and a root of
trust for secure boot and TLS operations. The complexity of each
of these functional blocks leaves the system designer no other
choice but to rely on a mix of more or less trusted 3rd party
libraries [1].

In a traditional TEE architecture, secrets, cryptographic
keys, certificates, and the libraries related to their functionality
are combined into the single “secure world” available. Inside
this world, each component is exposed and needs to trust all
other components, de-facto breaking the zero-trust model [4, 5].
A single faulty instruction or software defect, intentional or
unintentional, in one of these components has the potential to
compromise them all [1, 3]. The second issue is complexity,
which is the enemy of security. Embedded system developers
are exposed to different programming models that are typically
very different in a TEE than in a single world implementation.
Commercial TEEs have TCBs of thousands of lines of code (and
hundreds of KiB), with many unverified and untrusted external
dependencies [5]. This is the main reason why TEEs are
typically implemented only if required by the downstream
customer. It also explains why commercial TEE
implementations are regularly breached [4, 5].

We propose that a modern effective TEE must provide the
following features:

• An extremely limited attack surface, in the order of few
kilobytes. Assuming a conservative 1 defect per 1,000 lines
of code ratio, a TCB equivalent to less than 1,000 lines of
code.

• Completely self-contained with zero dependencies from
libraries and other runtime components including C
runtime, linker scripts, and kernel-mode drivers.

• Provided in the form of a sealed pre-built runtime, driven by
statically defined user-defined policies, that doesn’t require
or even expose to the developer any other interface than the
policy configuration file itself.

• Isolation of executable code (text segments) to ensure that
user programs run in unprivileged mode so that they can’t
compromise the overall system integrity.

• Isolation of data (data segments) and memory-mapped
peripherals (typically I/O) via a hardware unit that prevents
access outside statically defined security boundaries.

Level Encoding Name Abbreviation

0

1

2

3

00

01

10

11

User /

Application

Supervisor

Hypervisor

Machine

U

S

H

M

Fig. 1. RISC-V Privilege Levels

www.embedded-world.eu

• Isolation of Interrupts so that interrupt handlers are mapped
to the respective zone context and executed at a reduced
level of privilege, unable to compromise the isolation
model.

• Isolation of cores and other microarchitectural resources
(e.g., caches) in heterogeneous systems such that low-
criticality/non-secure core(s) cannot compromise and/or
interfere with high-criticality/secure core(s).

• A preemptive temporal separation mechanism to ensure that
any single Zone cannot cause a denial of service by
indefinitely holding processing cycles, de facto taking the
system to a halt. This is a must for safety-critical
applications.

• A secure communications infrastructure to allow inter-zone
data transfers without relying on shared memory resources
such as buffers, stack, and heap.

• A secure inter-processor communications infrastructure to
allow zones running on the secure core(s) to send/receive
data to/from other low-criticality/non-secure core(s). In this
case, shared buffers are inevitable and should be protected
by exclusive allocation to the parties involved in the
communication and by policies enforcing the respective
consumer / producer role.

• A soft timer facility to multiplex the underlying hardware
timer functionality to make it available to each zone
independently from the others.

• Wait for interrupt functionality to allow transparent support
for system suspend and low-power states.

• Trap and emulate functionality for privileged instructions to
allow transparent robust implementation of existing
application code originally designed to operate in a single
unprotected memory space.

• An optional C language API to expose TEE runtime services
such as messaging and process scheduling.

• A built-time command line utility for Linux, Windows, and
Mac OS, fully integrated with toolchain and IDE, to
combine and configure the zones binaries and to produce
the signed firmware image for the secure boot of the system.

IV. MULTI ZONE ENCLAVES

Fig. 2 shows the system architecture of the proposed multi
zone enclave for Linux [7]. This architecture is substantially
different than traditional TEE architectures as it relies on a
separated deterministic core to execute multiple trusted
workloads alongside untrusted Linux applications.

Note: this architecture has been ideated by Hex Five for its
MultiZone® Security TEE, the first commercial enclave
specifically designed to bring security and separation to RISC-
V based Linux systems – patent pending US 16/450,826 PCT
US19/38774.

Multi Zone Secure Boot Process. The multi zone enclave

implements a 2-stage secure boot loader to verify the integrity

and authenticity of the firmware image - SHA-512. The standard

Linux boot process has been modified with the addition of the

multi zone secure boot loader (MSBL). This is responsible for

securely loading and booting the trusted execution environment

runtime, the user-mode enclaves binaries, and for handling the

execution of the four Linux-capable cores to the subsequent boot

stages: Zero Stage Boot Loader (ZSBL), First Stage Boot Loader

(FSBL), and Berkeley Boot Loader (BBL). ZSBL, FSBL, and

BBL boot stages are slightly modified to enforce overall system

security policies and to prevent any possible promiscuity of

untrusted Linux code with the secure enclaves.

Multi Zone Runtime. The multi zone runtime is comprised of

two main components: (i) the preemptive separation kernel and

(ii) the secure communications layer. The separation kernel

provides time and spatial isolation across the multiple zones of

the enclave. The kernel supports an unlimited number of

isolated zones compliant to the policies defined in the

configuration file by the system designer. Policies include read

/ write / execute access control and map the various physical

resources of the system – i.e. RAM, ROM, I/O, - and interrupt

sources to each zone (whitelist) and core (blacklist). The

separation kernel implements a preemptive real-time scheduler

with configurable round-robin and / or cooperative scheduling

policies. In addition, it provides multiplexed timer events

emulating one timer per each zone - in spite of the availability

of a single architectural machine timer. Interrupts handling is

fully isolated and emulated in the context of each zone. This

includes low-latency vectored interrupts, preemptible

Fig. 2. Multi Zone Enclave For Linux - System Architecture

interrupts, and Wait For Interrupt WFI (i.e., suspend mode). To

provide complete and transparent support for unmodified

binaries, the separation kernel handles trap & emulation for

most protected instructions - i.e. CSR read-only.

Multi Zone Secure Communications. Zones inside the

deterministic core communicate to each other via an exception

handling mechanism immune to shared memory attacks.

Communications across the cores rely on secure split buffers

according to the multi zone open standard API AMP/Linux

communication protocol. This protocol is designed for

heterogeneous systems where real-time applications run in one

or more MCUs alongside multiple AMP or SMP Linux-capable

CPUs. The protocol is based on four invariants. These

invariants specify the communication data path implemented

through a protected shared memory split buffer: one half for

zones 1 to n inboxes and one for the zone zero (Linux) inbox.

These inboxes follow a statically defined layout sized according

to the number of zones present in the system. The

communication flow specifies that access to inboxes requires

synchronization to avoid race conditions in multi-thread / multi-

core systems.

A. Reference Application

Fig. 3 shows the reference application that we developed for

system test and evaluation. It is designed to verify security and

separation of a 4-zone enclave in a mixed-criticality system

where Linux and real-time come together in a single RISC-V

chip. The multi zone enclave is configured to run four separated

bare metal applications (zones) fully protected from the Linux

untrusted cores. Zone #1 and zone #2 connect to a PC terminal

via SSH (Ethernet) to exercise and test secure connectivity,

integration with the Linux IPC driver, enforcement of the

isolation policies (PMP), performance statistics, soft-timer,

interrupts, inter-processor communications. Zone #3 connects to

a PC terminal via serial port (UART) to demonstrate peripheral

mapping, secure user-mode drivers, enforcement of isolation

policies, performance statistics, soft-timer, and inter-processor

communications. Finally, Zone 4 operates a robotic arm

connected via GPIO and blinks a heartbeat LED connected to

the PWM hardware. Commands entered by the user via zone #1,

#2, and #3 are dispatched via secure messaging to zone #4,

which operates the robot’s motors and reports back its status to

the other zones.

B. Security, Separation, And Performance Evaluation

The reference implementation was evaluated on Microchip

PolarFire® FPGA hardware. This system embeds five RISC-V

cores: one deterministic microcontroller RV64 IMACU plus

four RV64 IMACFU Linux-capable CPUs. In addition to

extensive testing of security and separation, we benchmarked

TCB size and performance metrics.

TCB Size. By design, the multi zone runtime is extremely

small, written completely in assembly, and completely self-

contained – no C libraries or runtime. Its TCB size is

approximately 2KiB, which allows for formal verification.

Performance Overhead. To assess the performance overhead,

we measured the zone context switch time. For the system

under test, configured for four zones, a full context switch takes

260 clock cycles or 260ns at the operating frequency of 1GHz.

If configured for a preemptive tick time of 10ms, the worst-case

performance overhead is 0.0026%.

Fig. 3. Multi Zone Enclave for Linux – Reference Application

www.embedded-world.eu

REFERENCES

[1] Chris Conlon and Cesare Garlati. “A New Zero-Trust Model for Securing

Embedded Systems”. In Proceedings of the Embedded World
Conference, Nuremberg, Germany, 2019.

[2] O. Alrawi, C. Lever, M. Antonakakis and F. Monrose, "SoK: Security
Evaluation of Home-Based IoT Deployments." IEEE Symposium on
Security and Privacy (SP), San Francisco, CA, USA, 2019.

[3] Simon Biggs, Damon Lee, and Gernot Heiser. "The Jury Is In: Monolithic
OS Design Is Flawed: Microkernel-based Designs Improve Security." In
Proceedings of the 9th Asia-Pacific Workshop on Systems, p. 16. ACM,
2018.

[4] Sandro Pinto and Nuno Santos, “Demystifying Arm TrustZone: A
Comprehensive Survey.” ACM Computing Surveys, vol. 51, no. 6, article
130, December 2018.

[5] David Cerdeira, Nuno Santos, Pedro Fonseca, Sandro Pinto. " SoK:
Understanding the Prevailing Security Vulnerabilities in TrustZone-
assisted TEE Systems." IEEE Symposium on Security and Privacy (S&P),
San Francisco, CA, USA, 2020.

[6] M. Bechtel and H. Yun, "Denial-of-Service Attacks on Shared Cache in
Multicore: Analysis and Prevention," 2019 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), Montreal,
QC, Canada, 2019, pp. 357-367.

[7] Hex Five Security Inc. “MultiZone® Security for Linux”. White Paper,
CA, USA, 2019. [Online]: https://hex-five.com/wp-
content/uploads/2020/01/multizone-linux-datasheet-20191216.pdf

[8] Sandro Pinto and Cesare Garlati. “User Mode Interrupts: A Must for
Securing Embedded Systems”. In Proceedings of the Embedded World
Conference, Nuremberg, Germany, 2019.

