
Lightweight Multicore Virtualization Architecture
exploiting ARM TrustZone

S. Pinto, A. Oliveira, J. Pereira, J. Cabral, J. Monteiro, A. Tavares
Centro Algoritmi - University of Minho

{sandro.pinto, andre.oliveira, jorge.pereira, jcabral, joao.monteiro, atavares}@dei.uminho.pt

Abstract—Virtualization technology is well established in the
server and desktop spaces, and has been spreading across
embedded system market. This technology allows for the co-
existence and execution of multiples operating systems on top
of the same hardware platform, with proven technological and
economic benefits. Hardware extensions for easing virtualization
have been added into several commercial off-the-shelf processors.
Among existing technologies, ARM TrustZone is gaining particu-
lar attention due to its broadly availability into ARM processors.
However, existent TrustZone-assisted virtualization solutions are
limited to a dual-guest and single-core configuration, which can
lead to the starvation of the non-secure side when the secure
world does not yield the processor.

This work presents the extension of a TrustZone-assisted hy-
pervisor to an asymmetric multi-processing configuration. We de-
scribe and demonstrate how to run a general-purpose operating
system side-by-side with an real-time operating system in a Xilinx
Zynq-based platform, enhanced with a dual ARM Cortex-A9.
The achieved results demonstrate that the implemented multicore
approach not only completely eliminates starvation, but also
increases the general-purpose operating system’s performance,
especially when the real-time workload is demanding.

Index Terms—TrustZone, Virtualization, Multicore, Monitor,
Security, Embedded Systems, ARM.

I. INTRODUCTION

Platform virtualization, which enables multiple operating
systems (OSes) to run on top of the same hardware platform,
is gaining momentum in the embedded systems domain [1].
Nevertheless, embedded virtualization has inherent character-
istics which substantially differentiate it from general-purpose
or server virtualization, since embedded devices are typically
resource and power constrained systems that must respond to
events within strict deadlines [2]. While in the server and
desktop space virtualization is used for load balancing, ser-
vice consolidation and power management, in the embedded
systems domain virtualization has been primarily employed
in order to partition functionality (real-time and non-real-
time characteristics), as well as minimizing the design and
certification efforts [2], [3].

Over the last few years several embedded virtualization
solutions have been proposed in the aerospace [4], [5], [6], au-
tomotive [7], [8] and industrial [9] domains. Some of them fol-
low a full-virtualization approach, while others implement par-
avirtualization [10]. Between both approaches there is a trade-
off regarding flexibility and performance: full-virtualization
incurs on a higher performance cost, while paravirtualization
incurs on a higher design cost. Taking in mind the penalties in-
curred by traditional virtualization, research and industry have

been focused their attention in providing hardware support to
assist virtualization. Intel, ARM and Imagination/MIPS intro-
duced their own commercial off-the-shell (COTS) technologies
[11], [12], [13], [14]. Among existent COTS technologies,
ARM TrustZone [15] is gaining particular attention due to the
ubiquitous presence of ARM-based devices in the embedded
sector, as well as the supremacy of TrustZone-enabled proces-
sors when compared with virtualization-enabled processors.
Furthermore, this technology is seen as the only implementable
hardware-based approach on those ARM processors, where
Virtualization Extensions (VE) are not available.

TrustZone technology virtualizes a physical core as two
virtual cores, providing two completely separate execution
domains [16]. The non-secure world acts as a virtual machine
(VM) under the control of a hypervisor running in the secure
world side. Some TrustZone-based solutions for virtualization
have been proposed [13], [17], [18], [19], [20], [21], however
all of them are limited to a dual-guest and single-core con-
figuration. The lack of scalability, in terms of the number of
guests and in terms of the number of supported cores, is the
main reason why several researchers still perceive TrustZone
as a limited and ill-guided virtualization mechanism [22]. In
[23], we demonstrate why this is not necessarily true, and
that is possible to run more than two VMs, by multiplexing
several guest OSes inside the non-secure world side. In [24],
Ngabonziza et al. outline the problem of starvation which can
occur in single-core platforms when the real-time operating
system (RTOS) does not yield its control of central processing
unit (CPU). We strongly believe this problem can be solved
by extending existent solutions to a multicore configuration.

This paper presents the extension of lightweight TrustZone-
assisted hypervisor (LTZVisor) [21] to an asymmetric multi-
processing (AMP) configuration. We demonstrate how to run a
general-purpose operating system (GPOS) side-by-side with a
real-time operating system (RTOS) on a Xilinx Zynq platform,
endowed with a dual-core ARM Cortex-A9. The GPOS runs
in one core over the non-secure world side, while the RTOS
runs in another core over the completely isolated secure world
side. We conducted an extensive set of experiments which
demonstrate the multicore approach completely extinguishes
starvation, while at the same time presenting several perfor-
mance advantages when the RTOS has a demanding workload.



II. ARM TRUSTZONE

TrustZone technology is a set of hardware security ex-
tensions, introduced with ARMv6K, in all ARM Cortex-A
processors [16]. Recently, ARM extended TrustZone also to
the Cortex-M processor family, but with slight differences.
In the remainder of this section, when describing TrustZone,
the focus will be on the specificities of TrustZone for the
application processors.

The TrustZone hardware architecture virtualizes a physical
core as two virtual cores, providing two completely sepa-
rated execution environments: the secure and the non-secure
worlds. A new 33rd processor bit, the Non-Secure (NS) bit,
indicates in which world the processor is currently executing.
To switch between the secure and the non-secure world, a
special new secure processor mode, called monitor mode,
was introduced. To enter the monitor mode, a new privileged
instruction was also specified - SMC (Secure Monitor Call).
The monitor mode can also be enabled by configuring it
to handle interrupts and exceptions in the secure side. The
TrustZone Address Space Controller (TZASC) and the Trust-
Zone Memory Adapter (TZMA) extend TrustZone security to
the memory infrastructure. TZASC can partition the DRAM
into different memory regions: this hardware controller has a
programming interface, accessible only from the secure side,
that can be used to configure a specific memory region as
secure or non-secure. By default, secure world applications
can access normal world memory but the reverse is not
possible. TZMA provides similar functionality but for off-chip
ROM or SRAM. The TrustZone-aware Memory Management
Unit (MMU) provides two distinct MMU interfaces, enabling
each world to have a local set of virtual-to-physical memory
address translation tables. The isolation is still available at
the cache-level, because processor’s caches have been ex-
tended with an additional tag which signals in which state
the processor accesses the memory. The AXI (Advanced
eXtensible Interface) system bus carries extra control signals
to restrict access to the main system bus. System devices can
be dynamically configured as secure or non-secure through
the TrustZone Protection Controller (TZPC). To support the
robust management of secure and non-secure interrupts, the
Generic Interrupt Controller (GIC) provides both secure and
non-secure prioritized interrupt sources.

III. LTZVISOR-AMP: DESIGN

LTZVisor-AMP implements a lightweight TrustZone-
assisted hypervisor with asymmetric multi-processing support.
One core runs in the secure world and is responsible for
hosting the privileged software, while the other core runs
in the non-secure world and is responsible for hosting the
non-privileged software. This means a one-to-one mapping
between guest OSes, cores, and the virtual states supported by
the processor exists. Fig. 1 depicts the proposed virtualization
architecture based on three main software components: the
hypervisor, the real-time guest OS, and the general-purpose
guest OS.

RTOS

ARM TrustZone-enabled SoC

GPOS

M
o

ni
to

r 
K

e
rn

e
l

(Secure World)

U
se

r 

GPOS Tasks RTOS Tasks

(Normal World)

Core 1Core 0

LTZVisor CoreService Layer

Fig. 1: LTZVisor-AMP Architecture

LTZVisor-AMP runs in the highest privileged processor
mode, i.e., in the monitor mode. The hypervisor, following an
AMP schema, is split into two parts. The core of the hypervisor
is the master of the system and is responsible for the main
tasks: configuring memory, interrupts and devices assigned
to each guest OS, as well as guaranteeing runtime support
for inter-partition communication. Whereas, the service layer
is responsible for guaranteeing minimal privileged support
for exception handling and forwarding, as well as for inter-
partition communication. The real-time guest OS kernel runs
in the supervisor mode of the secure world side and has
assigned a dedicated core. This VM must have a small trusted
computing base (TCB), because when the processor state
is secure it has full view over the non-secure world side.
As such, the privileged guest code can interfere with the
other guest OS, by accessing or modifying its state or the
state of its resources (memory or memory mapped devices).
The general-purpose guest OS kernel runs in the supervisor
mode of the non-secure world side, and has also assigned a
dedicated core. The software running on the secure world side
is completely isolated from the privileged software running on
the non-secure world side. When the processor is operating
in a privileged mode but not in the secure state, it cannot
access or modify any state information belonging to the secure
world. Any attempt from the non-secure guest OS to access
any resource of the secure world side immediately triggers an
exception to the service layer, which will be responsible for
forwarding it to the core of the hypervisor.

IV. LTZVISOR-AMP: IMPLEMENTATION

LTZVisor-AMP is a lightweight TrustZone-assisted hyper-
visor which implements support for a supervised asymmetric
multi-processing configuration. This section describes the de-
tails behind its implementation.

A. Guest Management

LTZVisor-AMP is responsible for managing guest OSes
in an asymmetric fashion, by assigning them to run over
individual cores at boot time. Since the hardware in which our



system was deployed (Zedboard) is endowed with a dual-core
Cortex-A9, an one-to-one mapping between guests, worlds
and cores was implemented. This means the general-purpose
guest OS, running on the non-secure world side, is assigned to
one core, while the real-time guest OS, running on the secure
side, is assigned to another core. For easing the development
and to avoid modifications to the Linux kernel, the general-
purpose guest OS runs over the primary core (core0), because
by default the supported version of Xilinx Linux is not ready
for executing on the secondary core. The flexibility to swap
guests across cores will be addressed in the future.

B. Memory Partition

TrustZone-enabled SoCs (which are not VE-enabled) only
provide MMU support for single-level address translation.
However, the TZASC provides mechanisms for partitioning
memory into different segments. This memory segmentation
feature can, therefore, be used to ensure spatial isolation
between guest OSes. It is basically done by adequately
configuring the security state of the memory segments of
respective partitions. The general-purpose guest OS must have
its own memory segment(s) configured as non-secure, while
the real-time guest OS, as well as the hypervisor, as secure.
If the non-secure guest OS tries to access a secure memory
region, an exception is automatically triggered and redirected
to the hypervisor. Memory segments can be configured with
a specific granularity, which can be different from platform to
platform. In the hardware platform under which our system
was deployed (Zynq), memory regions can be configured with
a granularity of 64MB, and both cores share the same memory
model. LTZVisor-AMP configures the security state of the
memory according to the following map: the general-purpose
guest OS uses the first seven memory segments, corresponding
to a total of 448MB of non-secure memory; the hypervisor
and the real-time guest OS use only the last available memory
segment; finally the remainder of the 32-bit memory address
space is not accessible because Zedboard is only endowed with
a 512MB DDR3 memory.

C. MMU and Cache Management

TrustZone-enabled SoCs provide two distinct MMU inter-
faces, enabling each world to have a local set of virtual-to-
physical memory address translation tables. The same kind of
isolation is still available at cache-level. The MMU and Level
1 (L1) cache exist for each individual core, which mean each
guest OS, running in an AMP schema, has a dedicated set
of hardware. Level 2 (L2) cache, in turn, is shared among
both cores. However, the existence of secure and non-secure
cache entries alleviates L2 cache management, because the
cache coherence between both guest OSes is guaranteed by
the TrustZone-hardware itself.

D. Device Partition

LTZVisor-AMP implements device virtualization by adopt-
ing a pass-through policy, which means devices are managed
directly by guest partitions. To achieve isolation at device

level, devices assigned to the GPOS and the RTOS partitions
(at build time) are statically configured as non-secure or
secure, respectively. Isolation provided by means of the TZPC
guarantees the non-secure guest (GPOS) cannot compromise
the state of a device belonging to the secure guest (RTOS),
and if the non-secure GPOS tries to access a secure device,
an exception will be automatically triggered and handled by
the hypervisor service layer. The granularity of the isolation
is per-device, but it also depends from platform to platform.
In Zynq-based devices, which is the case of the ZedBoard
platform, both processing system (PS) peripherals and pro-
grammable logic (PL) custom peripherals can be configured
as secure or non-secure. Shared device access was not taken
into consideration and it is out of the scope of this paper.

E. Interrupt Management

The TrustZone-aware GIC supports the coexistence of se-
cure and non-secure interrupt sources. The GIC supports
several interrupt models, allowing for the configuration of
IRQs and FIQs as secure or non-secure interrupt sources.
LTZVisor-AMP configures secure interrupts as FIQs, and non-
secure interrupts as IRQs. This is the suggested model by
ARM, which makes sense in our system configuration, since
FIQs (assigned to the real-time environment) have a smaller in-
terrupt latency than IRQs. The core of the hypervisor (running
on core1) is responsible for configuring the GIC distributor
as well as its individual interface. The service layer of the
hypervisor is responsible for configuring just the individual
interface of core0. Secure interrupts (i.e., FIQs) arriving to
core1 are redirected to the RTOS without any hypervisor
interference. Secure interrupts arriving to core0 are redirected
to the service layer, which will forward them to the core
running the hypervisor. According to our design, only secure
(software generated) interrupts are supposed to be triggered
on core0 when inter-partition communication is needed. If an
IRQ arises (on core1) while the RTOS is executing, it does not
affect the expected RTOS behaviour. This prevents any kind
of denial-of-service attack over the real-time environment.

F. Time Management

Temporal isolation in virtualized systems is typically
achieved using two levels of timing: at hypervisor level and
at partition level. For the partition level, hypervisors typically
provide timing services which allow for guests to have notion
of virtual or real time. The implementation of virtual or
real notion of the passage of the time introduces different
levels of complexity, and when virtualization targets real-time
environments, timekeeping issues still prevail as an open ques-
tion. LTZVisor-AMP provides a distinctive time management
implementation. Due to its dual-OS nature, the hypervisor
dedicates one independent timing unit for each guest OS.
The RTOS uses the Triple Timer Counter (TTC) 0, while the
GPOS uses the ARM global timer. It is fundamental that the
hypervisor configures the global timer as a non-secure device,
otherwise an exception will be triggered on the first attempt
to access it. This specific time management implementation



80

85

90

95

100

105

TM_Coop_CS TM_Preem_CS TM_FIQ_Hand TM_FIQ_Preem TM_Mem_Alloc TM_Msg_Proc TM_Sync_Proc

R
e

la
ti

ve
 P

e
rf

o
rm

an
ce

 (
%

)

Variation

3
0

1
4

0
3

6

9
0

9
8

7
4

1
5

2
1

7
6

8
  

7
1

8
8

1
9

 

2
2

0
0

3
6

4
 

1
6

0
0

1
3

3
 

2
3

7
2

3
3

0
  

LTZVisor-AMPLTZVisorNative

Fig. 2: Thread-Metric benchmarks results

ensures that each VM has its timing structures updated at all
times. The RTOS does not miss any system-tick interrupt, and
the GPOS is completely aware of the real passage of time.

G. Inter-Partition Communication

LTZVisor-AMP uses the standardized VirtIO interface [25]
to provide a transparent virtual mechanism for implementing
communication between the two different guest OSes. It
implements an adaptation of the Remote Processor Messaging
(RPMsg) API from the Texas Instrument and OpenAMP group
to a supervised multicore architecture. The implementation
from Texas provides the foundation for implementing com-
munication on top of a GPOS, while the implementation from
OpenAMP provides the foundation for a bare-metal approach.
The adopted architecture implements different data and event
paths, which promotes asynchronous communication. The data
path is defined by a shared block of memory, configured as
non-secure. The event path is defined by software generated
interrupts (SGIs) routed through the hypervisor. This mecha-
nism is based on requests from guest OSes to the hypervisor,
via the SMC instruction. All requests are stored in a circular
buffer. During each partition switch, LTZVisor triggers SGIs
to the respective guest OSes, enabling asynchronous notifica-
tions. More details regarding the inter-partition communication
mechanism are out of the scope of this paper, and it will be
individually addressed in a future publication.

V. EVALUATION

LTZVisor-AMP was evaluated on a Zedboard targeting a
dual ARM Cortex-A9 running at 667MHz. Our evaluation
was split into three different test case scenarios: (i) RTOS
performance (Section V-A), (ii) GPOS performance when the
RTOS is idle, and (iii) GPOS performance when the RTOS
has different workloads (Section V-B). LTZVisor and both OS
partitions were compiled using the ARM Xilinx toolchain,
with compilation optimizations disabled (-O0). The idea of
presenting results with compilation optimizations disabled is
because this configuration outputs the worst case scenario.
Xilinx Linux (v4.0.0) and FreeRTOS (v7.0.2) were used as
non-secure and secure partitions, respectively.

A. RTOS performance

The Thread-Metric Benchmark Suite consists of a set of
benchmarks properly conceived to evaluate RTOSes perfor-
mance. The suite comprises 7 benchmarks, evaluating the
most common RTOS services and interrupt processing. Each
benchmark outputs a counter value, representing the RTOS
impact on the running application: the higher the value, the
smaller the impact.

Benchmarks were executed in three different system con-
figurations: the native FreeRTOS; the virtualized FreeRTOS
running on top of the hypervisor in a single-core configuration
(LTZVisor); and the virtualized FreeRTOS running on top of
the hypervisor in a multicore configuration (LTZVisor-AMP).
The native version of FreeRTOS runs on top of the core0,
likewise the virtualized FreeRTOS partition running on top of
LTZVisor. The FreeRTOS running on top of LTZVisor-AMP
distinguishes from the other system configurations, because it
executes in core1. Fig. 2 presents the achieved results, corre-
sponding to the average relative performance (as well as the
average absolute performance) of 1000 collected samples for
each benchmark. Each sample reflects the benchmark score for
a 30 seconds execution time, encompassing a total execution
time of 500 minutes for each benchmark. In accordance with
Fig. 2 the overhead introduced by the virtualization layer
in single-core configuration is null, while in the multicore
configuration it presents an average performance degradation
of 3%. For the single-core configuration the null overhead
is perfectly understandable because, despite both OSes are
sharing the same core, once FreeRTOS starts running real-
time tasks, it will never be interrupted by the GPOS or
even by the hypervisor (asymmetric scheduling [21]). For the
multicore configuration, we strongly believe the reason behind
the performance degradation is related with some architectural
or micro-architectural implication of running the real-time
guest OS over the secondary core. Notwithstanding, an in-
depth investigation about the motivational reasons behind this
phenomenon will be carried out in the near future.

B. GPOS performance

LMBench [26] is a widely used suite of micro-benchmarks
that measure a variety of important aspects of system per-



90.00

92.00

94.00

96.00

98.00

100.00

102.00

104.00

int
bit

int
add

int
mul

int
div

int
mod

int64
bit

int64
add

int64
mul

int64
div

int64
mod

float
add

float
mul

float
div

double
add

double
mul

double
div

float
bogom
flops

double
 bogom

flops

R
el

at
iv

e 
P

er
fo

rm
an

ce
 (

%
)

LMBench Linux GPOS

VariationLTZVisor LTZVisor-AMPNative

Fig. 3: LMBench arithmetic operations latency (lat ops) benchmark results

formance, such as latency and bandwidth. The LMBench
3.0 suite includes more than forty micro-benchmarks within
three different categories: bandwith, latency, and other. We
focus our evaluation on the arithmetic operations latency
micro-benchmark (lat ops), in order to evaluate general CPU
performance (VFP and Neon are disabled). We split the GPOS
evaluation into two different experiments: firstly, we evaluate
the performance overhead, from the general-purpose guest OS
perspective, for a fixed guest-switching rate and when the real-
time guest OS is idle; then we repeat the performance overhead
evaluation, but for different guest-switching rates and real-time
workloads.

1) RTOS idle: For the first part of the experiment, FreeR-
TOS was configured with a 1 millisecond tick rate (i.e., guest-
switching rate) and no real-time tasks were added to the
system, which represents a null workload on the RTOS side
(FreeRTOS will be infinitely executing the idle task). We ran
the micro-benchmarks in the native version of Linux (N) and
compared it against the virtualized version running on top of
LTZVisor and LTZVisor-AMP. L1 cache and branch prediction
were enabled for both test case scenarios. For each micro-
benchmark we performed 100 consecutive experiments. For
each experiment the micro-benchmark was configured for 10
warm-ups and 1000 repetitions (-W 10 -N 1000). Presented
results correspond to the average relative performance and
variation (as well as the average absolute performance). Fig.
3 presents the achieved results for the arithmetic operations
latency benchmark. In accordance with Fig. 3, the average per-
formance degradation introduced by the virtualization layer in
single-core configuration is around 2%, while in the multicore
is null. For the single-core configuration the 2% overhead is
justified by the context-switch time: since both OSes share
the same core, for every single tick the general-purpose guest
OS is preempted and the real-time guest OS is resumed to
verify if any real-time task is ready-to-run. For the multicore
configuration, since each OS runs independently in each core,
the overhead introduced by the context-switch is non-existent.
Once the GPOS is running over the primary core, the particular
phenomenon highlighted in Section V-A was not observed.

0

10

20

30

40

50

60

70

80

90

100

0.50 10.00

P
er

fo
rm

an
ce

 (
%

)

Tick RTOS (milliseconds)

LTZVisor (0%) LTZVisor-AMP (0%) LTZVisor (25%) LTZVisor-AMP (25%)

LTZVisor (50%) LTZVisor-AMP (50%) LTZVisor (75%) LTZVisor-AMP (75%)

1.00 2.00 5.00 20.00

Fig. 4: LMBench arithmetic operations latency results: perfor-
mance overhead vs RTOS tick, for different workloads

2) RTOS with different workloads: For the second part of
the experiment, instead of fixing the FreeRTOS tick with a 1
millisecond rate, the same experiments were repeated for six
different guest-switching rates within a time window ranging
from 500 microseconds to 20 milliseconds. Furthermore, one
real-time task was added to the system, in order to simulate
different workloads on the real-time environment. We ran
the arithmetic operations latency benchmark in the virtualized
version of Linux running on top of LTZVisor and LTZVisor-
AMP. L1 cache and branch prediction were enabled for all
test case scenarios. For each micro-benchmark we performed
100 consecutive experiments, and for each experiment the
micro-benchmark was configured for 10 warm-ups and 1000
repetitions (-W 10 -N 1000). Presented results correspond
to the average performance overhead of measured results
regarding the 18 (arithmetic) micro-benchmarks. Six different
configurations were setup, corresponding to a tick rate of
0.5, 1, 2, 5, 10 and 20 milliseconds. Eight different tests
were carried out, because four different workloads were setup:
0, 25, 50 and 75%. This means for a specific RTOS tick
rate, the task will be consuming the CPU for the respective
percentage of time. Fig. 4 presents the achieved results. For the
single-core configuration it is clear the impact on performance



when the RTOS tick is shortened, as well as when the real-
time workload is increased. For example, when the real-time
workload takes the CPU for 75% of the time of the system tick,
the assessed performance ranges from 15.71% to 24.92% for a
guest-switching rate of 0.5 and 20 milliseconds, respectively.
This can lead, ultimately, to a complete starvation of the non-
secure side, just in the case when the real-time environment
does not release the CPU. On the other hand, for the multicore
configuration the four lines are overlapped. This means the
performance of the general-purpose guest OS is the same
as the native system, regardless of the RTOS tick and its
workload.

VI. CONCLUSION

In this paper we presented LTZVisor-AMP as an extension
of a TrustZone-assisted hypervisor for a supervised asym-
metric multi-processing configuration. A limitation of the
majority of existent TrustZone-assisted virtualization solutions
is related to the asymmetric scheduling policy. This design
principle dictates the GPOS can run only during the idle times
of the RTOS, which in a single-core configuration can lead
to the starvation of the non-secure side (GPOS). Presented
solution addresses and eliminates this problem, while simulta-
neously showing performance advantages for the GPOS when
the real-time environment has different workloads.

Future work will mainly focus on investigating means of
providing a higher degree of flexibility and scalability for the
implemented AMP configuration. Current solution is limited
to the one-to-one mapping between cores, guests and worlds.
While this solution can support several applications under
dual-core hardware platforms, it is not yet ready to scale for
quad-core platforms. We will also conduct an in-depth inves-
tigation to find the motivational reasons behind the observed
degradation of performance in running the RTOS over the
secondary core (core1). Finally, the porting of LTZVisor-AMP
for other TrustZone-enabled multicore platforms, as well as its
extension for symmetric multi-processing (SMP) configuration
and heterogeneous platforms are also at the top of our goals.

VII. ACKNOWLEDGEMENTS

This work has been supported by COMPETE: POCI-
01-0145-FEDER-007043 and FCT - Fundação para
a Ciência e Tecnologia - within the Project Scope:
UID/CEC/00319/2013. Sandro Pinto is supported by
FCT PhD grant SFRH/BD/91530/2012.

REFERENCES

[1] G. Heiser, “Virtualizing Embedded Systems: Why Bother?” in Proceed-
ings of the 48th Design Automation Conference, ser. DAC ’11. ACM,
2011, pp. 901–905.

[2] ——, “The Role of Virtualization in Embedded Systems,” in Proceed-
ings of the 1st Workshop on Isolation and Integration in Embedded
Systems, ser. IIES ’08. New York, NY, USA: ACM, 2008, pp. 11–16.

[3] M. Rosenblum and T. Garfinkel, “Virtual machine monitors: current
technology and future trends,” Computer, vol. 38, no. 5, pp. 39–47,
May 2005.

[4] A. Crespo, I. Ripoll, and M. Masmano, “Partitioned Embedded Architec-
ture Based on Hypervisor: The XtratuM Approach,” in 2010 European
Dependable Computing Conference, April 2010, pp. 67–72.

[5] H. Joe, H. Jeong, Y. Yoon, H. Kim, S. Han, and H. W. Jin, “Full
virtualizing micro hypervisor for spacecraft flight computer,” in 31st
Digital Avionics Systems Conference, Oct 2012, pp. 6C5–1–6C5–9.

[6] A. Tavares, A. Didimo, S. Montenegro, T. Gomes, J. Cabral, P. Cardoso,
and M. Ekpanyapong, “RodosVisor - an object-oriented and customiz-
able hypervisor: The CPU virtualization,” IFAC Proceedings Volumes,
vol. 45, no. 4, pp. 200 – 205, 2012.

[7] D. Reinhardt and G. Morgan, “An embedded hypervisor for safety-
relevant automotive E/E-systems,” in IEEE International Symposium on
Industrial Embedded Systems, June 2014, pp. 189–198.

[8] C. Lee, S. W. Kim, and C. Yoo, “VADI: GPU Virtualization for an
Automotive Platform,” IEEE Transactions on Industrial Informatics,
vol. 12, no. 1, pp. 277–290, Feb 2016.

[9] Y. Kaneko, T. Ito, and T. Hara, “A measurement study on virtualization
overhead for applications of industrial automation systems,” in IEEE
International Conference on Emerging Technologies and Factory Au-
tomation, Sept 2016, pp. 1–8.

[10] J. Shuja, A. Gani, K. Bilal, A. U. R. Khan, S. A. Madani, S. U. Khan,
and A. Y. Zomaya, “A survey of mobile device virtualization: Taxonomy
and state of the art,” ACM Comput. Surv., vol. 49, no. 1, pp. 1:1–1:36,
Apr. 2016.

[11] U. Steinberg and B. Kauer, “NOVA: A Microhypervisor-based Secure
Virtualization Architecture,” in European Conference on Computer
Systems, ser. EuroSys ’10. ACM, 2010, pp. 209–222.

[12] C. Dall and J. Nieh, “KVM/ARM: The Design and Implementation of
the Linux ARM Hypervisor,” SIGPLAN Not., vol. 49, no. 4, pp. 333–
348, Feb. 2014.

[13] S. Pinto, D. Oliveira, J. Pereira, N. Cardoso, M. Ekpanyapong, J. Cabral,
and A. Tavares, “Towards a lightweight embedded virtualization archi-
tecture exploiting ARM TrustZone,” in IEEE International Conference
on Emerging Technologies and Factory Automation, Sept 2014, pp. 1–4.

[14] S. Zampiva, C. Moratelli, and F. Hessel, “A hypervisor approach with
real-time support to the MIPS M5150 processor,” in International
Symposium on Quality Electronic Design, March 2015, pp. 495–501.

[15] P. Wilson, A. Frey, T. Mihm, D. Kershaw, and T. Alves, “Implementing
Embedded Security on Dual-Virtual-CPU Systems,” IEEE Design Test
of Computers, vol. 24, no. 6, pp. 582–591, Nov 2007.

[16] T. Alves and D. Felton, “TrustZone: Integrated Hardware and Software
Security,” Technology In-Depth, vol. 3, no. 4, pp. 18–24, 2004.

[17] J. Winter, “Trusted Computing Building Blocks for Embedded Linux-
based ARM Trustzone Platforms,” in ACM Workshop on Scalable
Trusted Computing. ACM, 2008, pp. 21–30.

[18] M. Cereia and I. Bertolotti, “Virtual Machines for Distributed Real-time
Systems,” Computer Standards & Interfaces, vol. 31, no. 1, pp. 30–39,
Jan. 2009.

[19] D. Sangorrin, S. Honda, and H. Takada, “Dual operating system ar-
chitecture for real-time embedded systems,” in International Workshop
on Operating Systems Platforms for Embedded Real-Time Applications,
Brussels, Belgium, 2010, pp. 6–15.

[20] S. Oh, K. Koh, C. Kim, K. Kim, and S. Kim, “Acceleration of dual OS
virtualization in embedded systems,” in Int. Conference on Computing
and Convergence Technology, Dec 2012, pp. 1098–1101.

[21] S. Pinto, J. Pereira, T. Gomes, A. Tavares, and J. Cabral, “LTZVisor:
TrustZone is the Key,” in 29th Euromicro Conference on Real-Time
Systems (ECRTS 2017), ser. Leibniz International Proceedings in Infor-
matics (LIPIcs), vol. 76, 2017, pp. 4:1–4:22.

[22] P. Varanasi and G. Heiser, “Hardware-supported Virtualization on
ARM,” in Proceedings of the Second Asia-Pacific Workshop on Systems,
ser. APSys ’11. ACM, 2011, pp. 11:1–11:5.

[23] S. Pinto, J. Pereira, T. Gomes, M. Ekpanyapong, and A. Tavares,
“Towards a TrustZone-assisted Hypervisor for Real Time Embedded
Systems,” IEEE Computer Architecture Letters, 2016.

[24] B. Ngabonziza, D. Martin, A. Bailey, H. Cho, and S. Martin, “TrustZone
Explained: Architectural Features and Use Cases,” in Int. Conference on
Collaboration and Internet Computing, Nov 2016, pp. 445–451.

[25] R. Russell, “Virtio: Towards a de-facto standard for virtual i/o devices,”
SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 95–103, Jul. 2008.

[26] L. McVoy and C. Staelin, “lmbench: Portable Tools for Performance
Analysis,” in USENIX annual technical conference. San Diego, CA,
USA, 1996, pp. 279–294.


