
Bringing Hardware Multithreading
to the Real-Time Domain

RT-SHADOWS: Real-Time System Hardware for Agnostic and Deterministic OSes Within Softcore

Tiago Gomes, Paulo Garcia, Sandro Pinto, João Monteiro, Adriano Tavares

Abstract—The emergence of hardware multi-thread (HW-MT)
architectures increased the performance of MT applications.
However, traditional HW-MT architectures are not suitable to
Real-Time Operating Systems as their performance-oriented
scheduling algorithm may conflict with RTOS software schedul-
ing.

This letter presents RT-SHADOWS, a portable architecture
which provides a unified hardware-software scheduling, bring-
ing the benefits of HW-MT to the RTOS domain. We show
that tightly-coupled real-time compliant hardware integration
achieves throughput benefits, maintaining the RTOS scheduling
policy intact while increasing the predictability of RTOSes. Our
solution shows on average, speed-ups between 3 and 4 times
over the native versions with very low area usage/performance
overhead ratio, due to its minimal cost (2% of extra slices per
hardware-supported thread). This work surpasses related work
by providing a complete and agnostic hardware solution which
is independent of any specific RTOS.

Index Terms—Real-Time OS, Determinism, Latency, Hard-
ware offloading, FPGA, Multithreading, ARM.

I. INTRODUCTION

Real-Time Operating Systems (RTOSes) aid designers in
simplifying and expediting the development of multi-threaded
applications by providing several Application Programming
Interfaces (APIs) at the cost of performance overhead and
reduced predictability [1]. Research [2][3][4] towards alle-
viating this overhead by migrating different functionalities
(mainly RTOS schedulers) into hardware has been performed.
Usually, a hardware scheduler is implemented in FPGA-fabric
and loosely-coupled to the processor using a commercially
available bus [2][3][5]. Although these projects focus on
hardware acceleration, there is no concern about portability
to other RTOSes, which limits legacy software re-use. These
projects fail to get the attention of the industrial community
[6], either because these solutions do not cover a wide spec-
trum of RTOSes or are too complex and RTOS-dependent,
which requires in-depth knowledge of the RTOS architecture
from software developers. MAPUSOFT [7] is a software-based
solution to provide agnosticism between applications and the

This work was supported by the FCT within the Project Scope:PEst-
UID/CEC/00319/2013. The work of T. Gomes was supported by the FCT,
Fundação para a Ciência e Tecnologia (Grant SFRH/BD/81682/2011).

T. Gomes, P. Garcia, S. Pinto, J. Monteiro and A. Tavares
are with Centro Algoritmi, University of Minho, Portugal (e-
mail: {tiago.a.gomes, paulo.garcia, sandro.pinto, joao.monteiro,
adriano.tavares}@algoritmi.uminho.pt).

OSes, while SEOS [6] is a hardware solution focusing on
adaptability for other RTOSes; however, acceleration is only
based on a hardware scheduler. To the best of the authors’
knowledge, no research has applied hardware multi-threading
(HW-MT) to existent RTOSes, allowing legacy applications
to benefit from shorter and deterministic context-switch and
interrupt handling.

HW-MT has been established as an architectural feature to
maximize throughput in a processor. The idea is to maintain
the processor running at maximum throughput by executing
several hardware-supported threads. HW-MT can increase
throughput up to 25% [8] by hiding idle times such as memory
latencies or branch penalties [9]. A HW-MT architecture typ-
ically encompasses per thread replication of the architectural
units on a processor (e.g., register-file, status register, program
counter, etc.) and a hardware scheduler in charge of managing
threads execution flow. This approach has been proved to
offer better processor utilization (throughput) when compared
to single-threaded cores [10]. However, traditional HW-MT
architectures are applied to Server/Desktop applications [8]
and are not suitable for RTOSes commonly used in embedded
systems. HW-MT schedulers use their own thread scheduling
algorithm (e.g., BMT, IMT or SMT) to explore chip utilization.
This hardware level scheduling diverges from RTOS software
scheduling, resulting in a hierarchical scheduling policy which
breaks the expected RTOS execution flow and established
static analysis methods; e.g., MIPS32 SMT-based HW-MT
support [4] requires equivalent SMT software scheduler. Fig.
1 depicts the two levels of hierarchical scheduling found in
traditional HW-MT architectures.

We present a HW-MT solution which provides throughput
benefits, maintaining the RTOS scheduling policy intact and
increasing the predictability of RTOSes. To accomplish this,
we have developed RT-SHADOWS, a highly-portable multi-
threaded softcore processor which offers hardware multi-
thread support portable across RTOSes, as well as higher per-
formance predictable behaviour. Our approach unifies RTOS
scheduling and hardware-based thread scheduling, implement-
ing a holistic multi-thread scheduling (Fig. 1) which leverages
the advantages of HW-MT to the real time world. By inte-
grating the RTOS scheduler with the processor scheduler in a
tightly-coupled fashion, the performance advantages of HW-
MT are achieved without sacrificing (often improving) deter-
ministic execution nor invalidating established static analysis
methods.

The main contribution of this letter is the implementation
of a hardware multi-threading architecture to cope with real-

Fig. 1: Scheduling on single-thread, traditional multi-thread
and RT-SHADOWS architectures

time applications. The main features of our system architec-
ture are: (1) Unified HW/SW Multi-Threading Support; (2)
Deterministic Tightly-Coupled Processor Scheduler; (3) APIs
Agnosticism; (4) High Portability; (5) Short and Deterministic
Interrupt Handling [11].

II. PROBLEM DESCRIPTION

Traditional HW-MT architectures apply their own schedul-
ing algorithm (e.g., BMT, IMT or SMT) to manage threads
execution flow in order to achieve maximum performance.
Furthermore, RTOSes also apply their own scheduling algo-
rithm which results in a hierarchical scheduling conflict as
shown in Fig. 2, which depicts an example where the IMT
scheduling algorithm would change the expected behaviour
of an RTOS execution flow. Running 2 threads in round-robin
scheme (i.e., both have the same priority), it is expected that T1
starts executing first and takes the mutex (Fig. 2 (a)). After the
time-slice assigned to T1 is finished, T2 starts executing. As
the mutex is already taken by T1, T2 will fail to take it. In Fig.
2 (b) we are applying a round-robin scheme but using an IMT
policy at hardware level (i.e., at each clock cycle a different
thread is dispatched). With IMT scheduling, T2 may take the
mutex before T1 (Fig. 2 (b)) which would modify the expected
execution flow. RT-SHADOWS takes advantages of HW-MT
architectures using current RTOS solutions by unifying the
two scheduling strategies.

III. RT-SHADOWS ARCHITECTURE DESCRIPTION

An in-house ARMv5-compliant softcore was extended with
new micro-architectural features to provide parameterisable,
deterministic and agnostic HW-MT support. Fig. 3 depicts RT-
SHADOWS architecture. The number of hardware-supported

Fig. 2: Scheduling conflict; (a) RTOS scheduling policy (b)
IMT scheduling policy

Fig. 3: RT-SHADOWS top-level architecture

threads is configurable up to 128 threads, depending on
the application demands. For area-constrained platforms, RT-
SHADOWS allows the use of regular software threads if the
number of application’s threads is greater than the number of
hardware-supported ones, ensuring scalability. Also, the use
of delay timers and synchronization methods (e.g., mutexes
and semaphores) is optional. RT-SHADOWS offers a set of
thread management and synchronization APIs commonly used
in RTOSes. These are application-transparent, i.e., applications
use the standard RTOSes APIs, wrapped into RT-SHADOWS
APIs, in order to interface with the HW-MT support. In
summary, only OS port-specific files are modified and no
modifications are required on the OS kernel source, ensuring
all the standard APIs remain intact.

A. Hardware Multi-Threading Support

Interrupt processing and RTOS services are the most impor-
tant aspects that define RTOS performance. Each hardware-
supported thread has its own registers, allowing short and
deterministic switching of multiple contexts within the core.
The ARM architecture supports multiple execution modes
(e.g., IRQ, Supervisor, User, etc) which different RTOSes can
leverage. In order to speed-up exception handling time, ARM
uses banked registers for each mode. To support multiple
RTOSes, our architecture allows banked registers mode to be
software configurable; e.g., FreeRTOS’s threads run in system
mode while uCOSII’s threads run in supervisor mode, with
banked registers’ mode matching RTOS’s specification. In
order to ensure a short and predictable interrupt response time,
a hardware-supported thread is dedicated to the kernel. Hence,
the RTOS interrupt latency overhead is decreased as no context
of the currently running thread must be saved. Additionally,
our architecture is able to solve the rate-monotonic priority in-
version found in many RTOSes using our task-aware interrupt
controller presented in [11].

1 4 8 16 32 64 128

15000
20000
25000
30000
35000
40000
45000
50000

Number of Threads

 Number of Slices

Fig. 4: RT-SHADOWS hardware cost for a different number
of hardware-supported threads over the single-thread version

B. Unified Scheduler

The unified processor scheduler is implemented as a tightly-
coupled ARM co-processor. In contrast to loosely-coupled
schedulers, usually connected to a bus where several peripheral
devices may compete for access, communication between the
core and the co-processor is performed using MCR/MRC
instructions, ensuring a short and deterministic communication
link. This processor scheduler offers a high level of software
configurability: (1) configurable scheduling algorithm (op-
tional round-robin scheme); (2) configurable order of thread
priorities (e.g., ascending or descending), enabling RTOSes to
configure if low or high priority numbers denote low or high
priority threads; and (3) ARM mode of the banked registers.
A compact Thread Control Block (TCB) is used to store the
thread’s information such as its priority, current state, handler
and stack pointer.

C. Delay Timers and Synchronization Mechanism

Delay Timers are used by RTOSes to block the currently
running thread by a specific amount of time. This usually
implies a timer for each thread, unblocking it as soon as
its timer expires. In order to optimize the hardware cost
of supporting hardware-supported threads delay a different
approach was implemented. There is a single system timer in

Fig. 5: Comparison between the performance and jitter results
in clock cycles for each architecture

(a)

(b)

(c)

(d)

0 500 1000 1500 2000 2500

(a) FreeRTOS (b) FreeRTOS: RT-SHADOWS (c) uCOSII (d) uCOSII: RT-SHADOWS

Clock Cycles

In
te

rru
pt

 O
ve

rh
ea

d Variation
 Min

Fig. 6: RTOS interrupt overhead in clock cycles for each
architecture

charge of counting OS ticks. Each thread has a time-stamp
register containing the number of ticks for which it must
wait until the system timer overpasses the time-stamp. Hence,
delays can be implemented as extra registers plus comparators
(one per thread) instead of using an array of timers.

Semaphores and mutexes allow threads to wait for a specific
event or guarantee an exclusive access to a resource. Usually,
a thread can wait for an event or resource for a period of time
in which the thread will be blocked until the event or resource
is available. Taking advantage of available hardware, Delay
Timers are used to manage the blocking time, supporting
mutexes and semaphores in hardware with almost no hardware
cost.

IV. RESULTS AND EVALUATION

To evaluate our solution in terms of performance and deter-
minism two different experiments were conducted. Experiment
IV-A assesses APIs and shows the benefits of the hardware
multi-thread extensions over the native RTOS execution. Ex-
periment IV-B runs Thread-Metric Benchmark Suite in order
to evaluate how RT-SHADOWS alleviates RTOS overhead.
Both experiments were validated on a Kintex-7 FPGA Em-
bedded Kit (XC7K325T). Fig. 4 shows the hardware cost of
our approach. Our architecture requires around 2 percent more
chip space to support an extra hardware-supported thread.

A. API Evaluation

Several measurements were conducted in order to assess
minimum execution time (Min) and latency variance (Varia-
tion), of the most common APIs. Fig. 5 presents the results on
each architecture: (a) FreeRTOS native version; (b) FreeRTOS
with multi-threading extensions (c) uCOSII native version;
and (d) uCOSII with multi-threading extensions. A particular
API may have different outcomes depending on multiple
parameters such as the current threads’ states or priorities.
Hence, these results translate the values obtained from the
variations of these different parameters: (1) number of threads;
(2) thread’s priority; (3) consecutive threads’ priority gap and
(4) whether the API triggers a context-switch. These variations
encompassed several corner cases. As depicted, configura-
tions with multi-threading extensions outperform the native
versions. Both performance and determinism are significantly
increased. RT-SHADOWS reduces the overhead from 56% up
to 98%. Also, RT-SHADOWS shows that the variation of the

Fig. 7: Speed-up results running Thread-Metric Benchmark
with caches enabled

aforementioned parameters does not interfere with hardware-
based APIs’ execution time, i.e., the hardware latency is
constant no matter how many threads are hardware-supported
or created and their priorities. It is also noticeable that uCOS
natively has better determinism than FreeRTOS. The dispatch-
ing of threads with a huge gap between their priorities is the
main factor behind FreeRTOS indeterminism. Fig. 6 depicts
OS interrupt overhead of each configuration. This overhead
is measured as the time between CPU interruption until the
first instruction of the corresponding interrupt service routine
is issued from memory [1]. RT-SHADOWS is able to attend
an interrupt request in shorter time than the native versions.

B. Thread-Metric Evaluation

The Thread-Metric Benchmark Suite is a benchmark that
measures RTOS real-time performance developed by Express
Logic Inc. [12]. The suite consists of 7 benchmarks, each
evaluating interrupt processing and RTOS services. Each
benchmark’s score represents the RTOS impact on the running
application, i.e., the greater the score the smaller the impact.
These experiments were conducted with a clock frequency
of 33 Mhz, 10 ms periodic timer, with and without caches
enabled and the IAR compiler with no optimization. We
executed the benchmark on the FreeRTOS and uCOSII native
versions and compared them over RT-SHADOWS architecture.
Fig. 7 shows how our architecture outperforms the native
versions. Specially on benchmarks where context-switch and
interrupt handling are exacerbated, the RT-SHADOWS is able
to show speed-ups between 3 and 4 times. On the memory
and message specific benchmarks, RT-SHADOWS can still
present speed-ups due to the gain obtained on the periodic

context-switch. There is no results for uCOSII running the
cooperative scheduling since this algorithm is not supported.
Our system outperforms the native version with and without
caches enabled.

V. CONCLUSION

This letter described RT-SHADOWS, a co-designed hard-
ware/software architecture which implements a holistic HW-
MT solution, promoting configurability, determinism, perfor-
mance and portability. We showed how such a holistic HW-
MT approach can be applied to RTOSes solutions without the
need for refactoring legacy-software. Our solution outperforms
native solutions in terms of performance and determinism.
RT-SHADOWS presents very low area usage/performance
overhead ratio, due to its minimal cost (2% extra slices per
hardware-supported thread). This work surpasses related work
by providing a complete and agnostic hardware solution which
is also RTOS-agnostic. Future work will encompass the de-
velopment of new features and refactoring RT-SHADOWS to
allow fine-grained configurations/customizations. The ultimate
goal will be to develop a profiling tool, that through a hard-
ware/software co-design methodology, explores the migration
of software threads to hardware according to the application
and hardware platform demands and constraints.

REFERENCES

[1] F. Sheikh and D. Driscoll, “White paper: Mentor Graphics - Measuring
RTOS Performance: What? Why? How? ,” Tech. Rep., 2011.

[2] M. Naotaka, I. Takuya, H. Shinya, T. Hiroaki, and S. Katsunobu, “ARM-
based SoC with Loosely coupled type hardware RTOS for industrial
network systems,” in Proceedings of the 10th Annual Workshop on
Operating Systems Platforms for Embedded Real-Time Applications, ser.
OSPERT ’14, 2014, pp. 9–16.

[3] J. J. Labrosse, “White paper: Hardware-accelerated rtos: c/os-iii
hw-rtos and the r-in32m3,” Tech. Rep., accessed: 2015-08-03.
[Online]. Available: http://micrium.com/hardware-accelerated-rtos-%
C2%B5cos-iii-hw-rtos-and-the-r-in32m3/

[4] A. Oliveira, L. Almeida, and A. de Brito Ferrari, “The arpa-mt embedded
smt processor and its rtos hardware accelerator,” Industrial Electronics,
IEEE Transactions on, vol. 58, no. 3, pp. 890–904, March 2011.

[5] I. Bahri, M. Benkhelifa, and E. Monmasson, “Hw-sw real-time operating
system for ac drive applications,” in Power Electronics, Electrical
Drives, Automation and Motion (SPEEDAM), 2012 International Sym-
posium on, June 2012, pp. 194–199.

[6] S. E. Ong, S. C. Lee, N. Ali, and F. Hussin, “SEOS: Hardware
Implementation of Real-Time Operating System for Adaptability,” in
Computing and Networking (CANDAR), 2013 First International Sym-
posium on, Dec 2013, pp. 612–616.

[7] Mapusoft, “White paper: Mapusoft os abstractor,” Tech. Rep., accessed:
2015-08-03. [Online]. Available: http://www.mapusoft.com/wp-content/
uploads/documents/osabstractor whitepaper.pdf

[8] D. Koufaty and D. Marr, “Hyperthreading technology in the netburst
microarchitecture,” Micro, IEEE, vol. 23, no. 2, pp. 56–65, March 2003.

[9] A. Sodan, J. Machina, A. Deshmeh, K. Macnaughton, and B. Esbaugh,
“Parallelism via Multithreaded and Multicore CPUs,” Computer, vol. 43,
no. 3, pp. 24–32, March 2010.

[10] R. Dimond, O. Mencer, and W. Luk, “Custard - a customisable threaded
fpga soft processor and tools,” in Field Programmable Logic and
Applications, 2005. International Conference on, Aug 2005, pp. 1–6.

[11] T. Gomes, P. Garcia, F. Salgado, J. Monteiro, M. Ekpanyapong, and
A. Tavares, “Task-Aware Interrupt Controller: Priority Space Unification
in Real-Time Systems,” Embedded Systems Letters, IEEE, vol. 7, no. 1,
pp. 27–30, March 2015.

[12] I. Express Logic. Thread-Metric Benchmark Suite. [Online]. Available:
http://rtos.com/downloads/articles and white papers-1/

