
IEEE INTERNET OF THINGS JOURNAL, VOL.XX, NO.XX, MONTH 2019

Operating Systems for Internet of Things Low-end
Devices: Analysis and Benchmarking

Miguel Silva, David Cerdeira, Sandro Pinto, and Tiago Gomes

Abstract—In the era of the Internet of Things (IoT), billions
of wirelessly connected embedded devices rapidly became part
of our daily lives. As a key tool for each Internet-enabled
object, embedded operating systems (OSes) provide a set of
services and abstractions which eases the development and
speedups the deployment of IoT solutions at scale. This article
starts by discussing the requirements of an IoT-enabled OS,
taking into consideration the major concerns when developing
solutions at the network edge, followed by a deep comparative
analysis and benchmarking on Contiki-NG, RIOT, and Zephyr.
Such OSes were considered as the best representative of their
class considering the main key-points that best define an OS
for resource-constrained IoT devices: low-power consumption,
real-time capabilities, security awareness, interoperability, and
connectivity. While evaluating each OS under different network
conditions, the gathered results revealed distinct behaviors for
each OS feature, mainly due to differences in kernel and network
stack implementations.

Index Terms—Internet of Things, low-end devices, operating
systems, benchmarking, embedded systems.

I. INTRODUCTION

The Internet of Things (IoT) is revolutionizing the Internet
of the future by connecting billions of smart devices over a
massive and collaborative network infrastructure. The most re-
cent statistics estimate that by the year 2020 there will be over
50 billion Internet-enabled devices, motivating an increasing
focus from both industry and academia on such multi-trillion
dollar market [1,2]. The key-concept of the IoT is to enable
people and things to be connected anytime, at anyplace, with
anything, and anyone [3], which leads to a countless number of
use cases, constraints, and requirements in order to satisfy all
possible needs. The constrained nature of the IoT edge network
often implies the deployment of battery-powered and resource-
limited devices. Hence, hardware and software solutions must
support low-power operations while providing the necessary
system’s performance [4]. Additionally, it is required from any
IoT device to connect with others and the Internet, which is
mainly done through a wireless interface, e.g., RFID, IEEE
802.15.4, Wi-Fi, Bluetooth Low-Energy (BLE) [5], etc.

The massive heterogeneity of the existing embedded de-
vices, combined with the connectivity requirement, calls for

Manuscript received xxx; revised xxx. This work has been supported by
FCT - Fundação para a Ciência e Tecnologia within the Project Scope:
UID/CEC/00319/2019.

Miguel Silva, David Cerdeira, Sandro Pinto and Tiago Gomes are with
Centro ALGORITMI, University of Minho, PORTUGAL. Corresponding
author: Miguel Silva (miguel.silva@dei.uminho.pt).

Copyright (c) 2019 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

proper software solutions to efficiently manage and control
the available hardware resources. This requirement has driven
the development of a multitude of operating systems (OSes),
which tend to be specially tailored to cover a specific applica-
tion (e.g., automotive, wearables, health-care, etc.) and devel-
opment needs. Its design choices (e.g., kernel architecture and
the scheduling policy) have a direct and significant impact on
the overall system’s behaviour, both in terms of performance,
determinism, and power consumption. Among a broad list of
open-source OSes, some of them have been widely deployed in
several low-end IoT devices: Contiki, RIOT, Zephyr, TinyOS,
Amazon FreeRTOS, and many more [6]–[10].

Motivated by this broad collection of OSes and since there
is no ’one size fits all’ solution, the purpose of this work is
to analyze and benchmark some of the most prominent open-
source OSes for the IoT, taking into consideration the most
important aspects when deploying devices at the very edge.
By understanding their main differences and characteristics,
they can be carefully selected and deployed according to
the application needs, i.e., when real-time is required or a
low-power solution is preferred. For this purpose, this article
contributes to the state of the art with: (1) an analysis on some
of the most prominent open-source OSes for the IoT: Contiki-
NG, RIOT, and Zephyr; and (2) a complete benchmarking on
the most important features when designing an IoT embedded
device, such as performance, power consumption, real-time
capabilities, and memory footprint. In our experiments, we
had evaluated the effect of the network stack over the overall
OS metrics, and we had concluded that it is a significant source
of overhead and latency. To the best of our knowledge, this
work goes behind the state of the art [9]–[12], where mostly
a theoretical approach and a literature review is provided.

II. IOT ECOSYSTEM

The Internet Engineering Task Force (IETF) standardized
the classification of constrained devices into different sets
of classes [13]. This classification is done according to the
required memory footprint for both code and data:

• Class 0: These devices have the smallest resources (less
than 10 KB of RAM and less than 100 KB of Flash),
e.g., tiny sensing motes;

• Class 1: These devices have medium-level resources
(around 10 KB of RAM and 100 KB of Flash), e.g.,
motes with routing capabilities and security features;

• Class 2: Devices from this category have more resources
than the previous ones, e.g., small gateways, but are still
limited when compared to middle- and high-end devices.



Such classes are the result from the requirements imposed
by the IoT ecosystem, where each low-end device must fulfil a
set of requirements: ability to explore low-power modes with
reduced duty-cycle operation, manage resource-constrained
hardware, full connectivity and interoperability support, real-
time capabilities, and security awareness (hardware, data han-
dling, and secure data transmissions).

A. Low Power Consumption

IoT low-end devices often resort to low-power hardware,
which leads to a reduced energy consumption when all the on-
board components are lowered to the bare minimal, and when
processor’s low-power modes (e.g., deep sleep) are explored.
While both features are important, the latter is a common
requirement for almost any IoT solution, as these usually
only need to perform periodic tasks with decreased duty-cycle
operation. The software running on such platforms must also
be optimized and aware of the available power-saving features.

B. Resource-constrained Embedded Devices

There is an on-going trend in the industry to squeeze,
as much as possible, the so-called size, weight, power and
cost (SWaP-C) budget. IoT devices are a great example of
such paradigm. These devices are designed with minimal
margins and are usually limited to accommodate only the
target application, as oversized and unused components also
contribute to an increased power consumption and overall
cost. Another important aspect that greatly limits the resources
available on these devices is their placement, frequently re-
quiring footprints as small as possible. Hence, the number
of components has to be kept to the bare minimum to avoid
any waste of space. Taking into consideration the previous
aspects, the size and type of available memory in a system
can be also an indicator of the class of an IoT device, as
these components are sometimes the most power-consuming
elements of the final solution. Therefore, it is important to
determine the size of the available memory, both for code and
data, while also minimizing the amount of data that needs to
be saved between sleep/wake-up cycles, as this may require
memory to be permanently powered.

C. Connectivity and Interoperability

At the core of the IoT concept is the ability to connect every-
thing. Hence, each device must include the necessary hardware
and software for connectivity. Regarding the hardware, power
consumption is a crucial aspect that led to the adoption of
standard communication protocols for lossy communication
links. Among them, the most common are the IEEE 802.15.4,
BLE and Wi-Fi [14]. The physical (PHY) and medium access
control (MAC) layers, as well as the handling protocols, play
a major role in the overall power consumption. Regarding
the software, an embedded network stack must be provided
in order to support such wireless interfaces, while seamlessly
connecting to the Internet.

Such stack (depicted in Fig. 1), was derived from the
traditional seven-layer OSI Model stack and it is adopted by

Fig. 1: Standard IoT network stack.

the majority of OSes for IoT low-end devices. It is divided
into five independent layers, which allows full interoperability
and eases its portability among heterogeneous devices. For
each layer, several standards and protocols, e.g., UDP/TCP,
IPv6, CoAP, 6LoWPAN, were carefully selected to fulfil the
tight constraints of the target devices. Regarding the network
layer, by using a 128-bit addressing scheme, IPv6 is the key
to connect billions of devices to the Internet. In order to
allow its support over different MAC and PHY standards, it
is necessary an adaptation layer protocol, e.g., 6LoWPAN for
the IEEE 802.15.4. Due to the portability and interoperability
requirements, the network stack is usually provided by the OS.
Several open-source network stacks for low-end devices, like
OpenWSN [15] or lwIP [16], provide different characteris-
tics making them suitable for different sets of applications.
Additionally, OSes usually offer the network stack tightly
intertwined with the kernel, where both kernel and network
stack are developed and optimized together.

D. Real-Time

Several IoT applications, e.g., health-care and automotive
systems [17,18], require strict real-time guarantees. While the
microcontroller and the remaining hardware play a role on
system’s determinism and predictability, the system software
is also a major player. Several important aspects such as im-
plementation, optimization, architecture, programming model,
scheduling algorithm and whether or not it supports real-time
events (e.g., interrupts), defines how the OS is able to attend
critical tasks with high predictability and determinism [19].

OS architectures can be classified in either monolithic or
microkernel. The first approach assumes that all components
of the system are developed in tandem, leading to a simpler
and more efficient design. The microkernel approach is usually
designed with minimum kernel functionalities, implementing
several services in userland. Microkernel-like architectures
strive for simplicity, modularity, and minimality, usually at
the cost of performance. The scheduler is also directly related
to the OS architecture, and therefore represents another key
aspect when designing the OS, as it is the component that
manages how and when tasks are executed by the processor.
The scheduler should aim to optimize the system’s throughput,
energy efficiency, and resources utilization, while ensuring
determinism on each thread execution. While there are sev-
eral algorithms, most schedulers can be classified as either
cooperative or preemptive. The former requires each thread to
yield its execution to bring other threads in context, while the
latter relies on the principle that at some scheduling point the



running thread is interrupted and halted by the scheduler to
start the execution of the next thread. Achieving real-time on
a resource-constrained device is a goal that must be also met
by the system software and thus, choosing the right OS and
configuration for the application is a key aspect on whether
the entire solution will be able to meet the deadlines.

E. Security and Safety

The ongoing cat-and-mouse game of increasing hacks and
software patches has raised significant concerns on the need
of securing IoT devices. Moreover, the ever-growing vol-
ume of sensible data that is being processed by IoT nodes
following their proliferation; examples range from personal
or health-related data acquired from sensors. Therefore, in
order to ensure privacy and security of critical data through
communications on the IoT ecosystem, security mechanisms
must ensure confidentiality, integrity, authenticity, and non-
repudiation of the whole information’s life cycle. This can be
achieved through the protocols implemented on the network
stack or other external mechanisms [20].

Safety is another important aspect of IoT devices as most
of them tend to implement an ever-growing number of mixed-
critically features. Furthermore, safety and security stand hand
by hand - there is no safety without security and vice versa.
Any kind of malfunction or attack that seizes control of on-
board actuators can directly influence the normal behavior of
the system or even cause hazards to users. For example, a
very common attack to any device connected to a network
or to the Internet is called a denial of service (DoS) attack.
Despite it can be achieved through several ways, the main idea
is to deprive the system of its resources (e.g., processing time),
preventing it from performing as expected. This proves to be a
problem, for example in automotive applications, when critical
tasks need to be executed under bounded and deterministic
deadlines. While the DoS attack is only a generic example,
there are several other types of attacks that can be performed
by simply adapting the same concept from classical attacks on
network-based systems to IoT devices.

Another major concern around security relies on the hard-
ware itself. For instance, Arm TrustZone is a System-on-
Chip (SoC) and CPU security solution, which highly increases
the system security and reduces the attack surface by pro-
viding system-wide hardware isolation for trusted software
[21]. TrustZone was recently extended to Cortex-M based
systems, enabling robust levels of protection at all cost points
[22]. Embedded software developers can now enhance their
productivity by developing TrustZone-based systems. Such
tendency is already being adopted by prominent embedded
OSes, such as Zephyr [8]. Moreover, hardware solutions with
embedded system "Root-of-Trust" provide enhanced security
features in low-end systems traditionally deprived of security.

III. OSES ANALYSIS

In this work we evaluate three of the most prominent OSes
for IoT, which, apart from being completely open source,
are currently enjoying widespread applicability and continuous

TABLE I: OSes comparison.

OS Architecture Programming
Model

Scheduler Supported
Architectures

Network
Support

Contiki-NG Monolithic Event-driven Cooperative AVR, MSP430, ARM
Cortex-M

uIP and
RIME

RIOT Microkernel Multithreading Tickless
Preemptive

AVR, MSP430, ARM
Cortex-M, x86

gnrc

Zephyr Nanokernel+
Microkernel

Multithreading Tick-based
Preemptive

ARC, AVR, ARM
Cortex-M, x86, RISC-V

Native im-
plementation

support in the context of low-end IoT applications: Contiki-
NG, RIOT, and Zephyr. They were selected regarding the
main characteristics discussed in Section II, their programming
model (event-driven and multithreading), kernel architecture
(monolithic and microkernel), scheduling policy (cooperative
and preemptive) and native support of a network stack for low-
end devices (at least for class 0 and/or 1). These characteristics
are summarized in Table I.

A. Contiki-NG

Contiki was originally proposed by Dunkels et al. as an
OS for wireless sensor networks (WSNs) targeting resource-
constrained wireless node, and only later adapted for more
powerful devices [6]. The OS follows an event-driven pro-
gramming model based on a cooperative scheduling approach
using protothreads, a lightweight mechanism for pseudo-
threading, from which the programmer is abstracted. On its
current version, these are seen as statically defined Processes
and do not support priorities, since this OS implements a
cooperative scheduler. From a developer perspective, aside
from its declaration, each Process must be implemented as
a function that at some point yields the execution time to
the next Process. Failing to yield, e.g., stopping in an infinite
loop, would cause the whole system to halt. When deployed
in low-end devices, it is common to have a Process sleeping
or waiting for events that trigger their execution. While such
a feature is supported by the OS, fast response times to event
occurrence may not be achieved due to its scheduling policy.

To support the OS main requirements, Contiki includes
features that aim at communication-based low-power systems,
for instance, sleep mode managing, and support for several
network stacks, e.g., uIP. These stacks offer support for stan-
dard and well-known protocols such as IPv6, RPL, 6LoWPAN,
and CoAP, while supporting several PHY technologies, such
as IEEE 802.15.4, Wi-Fi or BLE. Contiki is mainly focused
on dependable (secure and reliable) low-power communication
and standard protocols for modern IoT platforms based on 32-
bit microcontrollers, mostly supporting Arm architectures. On
its latest version, Contiki-NG, the overall code structure was
revised and optimized with new configurations and a major
cleanup of the code base (obsolete protocols and standards
were removed), minimizing the final binary size.

B. RIOT

Initially designed with the IoT ecosystem as the main target,
its main characteristics comprise real-time capabilities and
low-power efficiency [7]. This OS employs a multi-thread



programming model and follows a microkernel-like architec-
ture, which steams for a simpler and shorter development
cycle due to its modular nature. RIOT implements a tickless
preemptive scheduler, which means that there are no periodic
events as scheduling points. This method tries to optimize
the time spent in low-power modes, i.e., sleep or deep sleep
modes, by forcing the system into these states whenever there
are no threads to be executed, i.e., when the idle thread is
active. The OS further guarantees the execution of kernel
tasks and inter-process communication, in order to fulfill real-
time requirements. Additionally, this OS includes its own
implementation of a full IoT stack named gnrc, which adds
the support to new protocols such as the 6TiSCH, the IPv6
over the TSCH mode of IEEE 802.15.4 standard.

C. Zephyr

Zephyr is an ongoing project from the Linux Foundation
designed for resource-constrained systems [8]. Similarly to
RIOT, it follows a multi-threading programming model with
a microkernel-based architecture. Zephyr uses a scheduler
based on a tick system to schedule each thread in a periodic
fashion. There are two major types of threads: 1) fiber, which
is a lightweight non-preemptible thread, usually with small
execution times and designed to be used in critical contexts;
and 2) task, that implements the common concept of a task
that can be preempted. While both can be prioritized among
themselves, fibers are inherently prioritized over tasks, and no
task will be scheduled when there are fibers waiting to execute.

Zephyr implements both a nano- and micro-kernel archi-
tectures. The former is a high-performance, multi-threaded
execution environment with a minimalist set of kernel features
conceived for highly constrained devices, while the latter com-
plements this with a set of richer and more complex features
such as network stack and device drivers for more complex
devices. Regarding networking features, Zephyr integrates its
own network stack implementation, including support for
low-power devices that require IEEE 802.15.4 or BLE radio
interfaces to communicate. Therefore, the 6LoWPAN adaption
layer is also supported in order to provide IPv6 connectivity,
leading to a highly modular and flexible implementation of
the network stack. Lastly, another important characteristic of
Zephyr is that it already supports RISC-V, an open source
processor architecture that recently has been given a lot of
attention from both academia and industry [23].

D. Conclusions

From Table I it is possible to observe that Contiki-NG is
representative of a different kernel implementation paradigm,
while both RIOT and Zephyr are similar in most aspects.
Despite both Zephyr and RIOT following a multi-threading
programming model, and to some extent, sharing the same ar-
chitecture principles, they follow a distinct scheduling policy:
RIOT is deprived of the notion of time and Zephyr uses peri-
odic events to iterate over the waiting threads. Aside from the
support to the main platforms on the market from all the OSes,
Zephyr is the one that already supports the next-generation
hardware architectures, i.e. TrustZone-M and RISC-V. Lastly,

Fig. 2: Network topology used in the experiments.

and regarding the supported network stack, Contiki-NG and
Zephyr provide their own monolithic implementations, while
RIOT uses an external stack from the OpenWSN project.

IV. EVALUATION

In this article, we benchmark the three aforementioned IoT
OSes by running the same set of benchmarks under the same
hardware and network conditions. The performed experiments
aimed at assessing memory footprint, performance, real-time,
and power consumption. Security-related aspects are, however,
out of the scope of this article.

A. Experimental Setup

All experiments were performed on a STM32L476G-
DISCOVERY, connected to a TI CC2520 radio through a
Serial Peripheral Interface (SPI). This development board
features an Arm Cortex-M4 processor running at a clock
speed of 80MHz. The Arm Cortex-M4 is one of the most
widespread microprocessor architectures on the embedded
systems market and, therefore, it is widely supported by the
developers community. The radio used in this setup supports
the IEEE 802.15.4 standard, which is one of the most widely
used protocols in IoT applications such as home automation
and industrial monitoring systems. In such systems, it is
common to have several nodes connected to each other and
the Internet. Due to the intrinsic difficulty in recreating a big-
scale network, a smaller topology was deployed (depicted by
Fig. 2) composed by three nodes, which evaluates a device
under test on different network conditions. Despite simple, it
still recreates the desired scenario where a node in operation
receives random connections from surrounding nodes, and the
incoming data is intended to the node itself or another node
in the network. Node 1 represents the device under test. This
device is able to establish a connection with both other nodes.
However, Node 2 and Node 3 cannot directly communicate
with each other, thus, they rely on the node being tested
to forward their message to its destination. Given that the
nodes are role-independent, the communication to and from
the device under test is established through an UDP connection
without a specific protocol at the application layer. As a
result, the entire network is being used with the following
configuration: UDP, IPv6/RPL, 6LoWPAN, IEEE 802.15.4
(MAC and PHY). Whenever Node 1 receives a message from
the network, it must either accept, reject, or forward it.

Experiments were performed by sending a fixed-size UDP
message of 24 bytes (which corresponds to 58 bytes of the
MAC Data Frame) through a socket on local/remote ports
8080/8081. The number of frames being sent to the device
under test was kept at an average rate of 230 packets per sec-
ond, reaching a point where the network is almost overloaded



but the receiving node is still able to attend each packet that is
being received. Lastly, all the evaluated OSes already provided
support for the target board and only slight modifications were
required to run them. Furthermore, the integration of the radio
driver with the network stack, as well as with the benchmark
suit to each OS, just required a small porting effort. Also,
each OS was kept with its default or suggested settings for
a similar application to the one under evaluation. Therefore,
the conducted benchmarks evaluate each OS as an off-the-
shelf solution, representing the conditions the developers will
expect when using each OS without modifications.

On all performed experiments, the network stack is always
initialized, whether network traffic exists or not. Depending
on the stack implementation and its integration with the
kernel, there may be threads related to the network stack
initiated before each benchmark starts executing. We strive
for this approach as we have the intention of understanding
the influence of the stack, even if it is on an idle state, while
benchmarking for each OS. Additionally, based on Fig. 2, four
different states of the network were used:

• Idle - In this state, there is no traffic in the network and
only essential tasks are being executed. It is expected that
the system does not perform any network-related tasks.

• Accept - All the network traffic is intended to Node
1. Data must be accepted and processed accordingly,
requiring the intervention of all the network stack layers.

• Reject - Contrarily to the previous test case scenario, all
the traffic is intended to be rejected, e.g., data is intended
to another node and must not be forwarded. In this case,
the packet is rejected as soon as possible (it can be done
either at the MAC or upper layers).

• Forward - This last test assumes that the destination
of the packet is unreachable by the original sender but
belongs to the same network and the selected routing
scheme is aware of the existence of this neighbor. In
such case, the packet is forwarded before reaching the
application layer of the stack.

For measuring the performance of each OS, the Thread-
Metric Benchmark Suite was used. This suite aims at evaluat-
ing the most common RTOS services and interrupt processing
mechanisms, encompassing a total of eight benchmarks:

• Basic Processing (T1) - A single thread performs math-
ematical operations in a loop and counts the number of
times the operation was done. It serves as the baseline
for the remaining tests.

• Cooperative context switching (T2) - Five threads
execute concurrently, each of them counting the number
of times they run. The result is the sum of all counters
from each thread.

• Preemptive context switching (T3) - It consists of
five threads with different priorities, each resuming the
next thread with a higher priority before suspending and
counting the number of times they run. The result is the
sum of the count values of each thread.

• Interrupt processing (T4) - A single thread is executed,
interrupted, and resumed afterwards. The result is the sum
of the number of times the interrupt was attended and the

number of times the thread was executed.
• Interrupt processing with preemption (T5) - It consists

of two threads with different priorities, where one of
which triggers an interrupt that is responsible for resum-
ing the other suspended thread. The value obtained is the
sum of the number of times each thread was executed
and the interrupt was attended.

• Message passing (T6) - A single thread sends a message
to itself through a queue, and upon receiving, a counter
is incremented.

• Semaphore processing (T7) - A single thread gets and
releases a semaphore in a loop cycle, counting the number
of times this process is executed.

• Memory allocation and deallocation (T8) - A thread
consecutively allocates and deallocates memory blocks
of 128 bytes, counting the number of times it is done.

Each benchmark, after running for a certain number of
iterations based on a 30-second cycle execution time, outputs
a score value, representing the OS impact on the running
application - higher scores express a smaller impact, i.e.,
higher performance. For the purpose of these experiments, it
was decided that all traffic should be either accepted, rejected
or forwarded. It was not taken into account test case scenarios
that encompass a mix of these network states, as they would
lead to application-biased conclusions.

In order to evaluate the power consumption, the develop-
ment board was powered with a precision power supply of
3.3V, while an ammeter was used to measure the current
that was only consumed by the SoC. This way, the power
consumption of all the external peripherals present on the
board, as well as the radio IC, were not considered.

B. Performance

Table II presents the performance results gathered from
all experiments. Each value corresponds to the average of
1000 collected samples. The three major rows correspond to
each OS for the different network operations. Given that the
hardware is the same in all tests, it is fair to put all OSes
into perspective and establish some comparisons among them.
Notwithstanding, we start by breaking down the results of the
various experiments for each OS.

1) Contiki-NG: In Contiki-NG, a Process is scheduled
following a cooperative policy, while the only form of pre-
emption is used by interrupt handlers in device drivers. For
this reason, preemptive-related benchmarks T3 and T5 were
slightly modified to be supported by Contiki, which means that
the results do not necessarily express a preemptive behaviour.
Their score resembles more a cooperative result since all
processes run at the same priority level, and in order to keep
the benchmark realistic, each thread controls the execution of
the next one. Furthermore, with the exception of T4, all ex-
periments have led to similar results regarding the cooperative
context switching benchmark (T2). This is mainly due to the
cooperative OS nature and the differences observed among the
results reflect the influence of the different APIs being used
on each benchmark, e.g., semaphores, suspending or resuming
threads, etc. Lastly, a noteworthy outlier in the assessed results,



TABLE II: Thread-Metric Benchmark Suite Results

OS Net. Status T1 T2 T3 T4 T5 T6 T7 T8 PD (%)

C
on

tik
i

Idle 252 568 13 056 369 13 316 018 20 707 686 12 858 805 12 483 662 12 103 265 9 205 842 (baseline)
Accept 236 938 12 212 617 12 448 708 19 355 980 12 022 817 11 664 648 11 308 671 8 592 961 -6.52%
Reject 240 215 12 382 610 12 621 778 19 634 155 12 194 618 11 829 477 11 469 341 8 716 317 -5.20%

Forward 237 706 12 253 965 12 489 632 19 426 463 12 058 879 11 698 686 11 348 671 8 619 847 -9.36%

R
IO

T

Idle 260 213 8 955 046 4 178 175 20 689 193 8 780 255 9 677 227 14 370 013 11 650 253 (baseline)
Accept 233 256 8 018 193 3 740 900 19 068 063 7 728 775 8 661 825 12 870 150 10 417 357 -10.33%
Reject 236 160 8 126 312 3 836 133 19 287 248 7 813 942 8 784 321 13 039 798 10 564 781 -9.03%

Forward 234 939 8 084 983 3 770 557 18 889 409 7 882 572 8 843 571 13 198 882 10 512 343 -12.83%

Ze
ph

yr

Idle 195 196 6 089 882 3 351 826 36 079 757 5 432 733 7 291 447 16 545 946 2 662 762 (baseline)
Accept 166 825 5 202 160 2 884 377 30 910 487 4 653 708 6 225 813 14 135 562 2 274 075 -14.47%
Reject 167 476 5 217 418 2 873 679 30 930 780 4 660 294 6 249 194 14 187 074 2 282 132 -14.26%

Forward 147 821 4 622 752 2 511 241 27 424 242 4 024 194 5 581 969 12 618 843 2 052 703 -24.18%

occurs in T4, where a single thread is interrupted and its
execution is returned after the interrupt service routine (ISR)
is finished. This behaviour results in a significant boost of
performance, as no context switches are performed.

2) RIOT: Due to its microkernel architecture, the values
gathered from the experiments reveal that, in this OS, the co-
operative related benchmarks tend to have better performance
when compared to the preemptive ones. This is related to the
fact that the executing task yields itself, instead of resuming
a different one, as observed in preemptive scheduling. The
latter involves more system calls and more effort from the
scheduler since the tasks have different priorities, resulting
in a considerable degradation of performance. Regarding the
interrupt-based benchmarks, the cooperative one reveals the
best results among all the others OSes, since the return from
the ISR does not involve a full context reschedule, once the
task that is resuming its execution is the same task that was
previously executing. On the other hand, in T5, a scheduling
point is forced after the interrupt since a different task resumes
its execution. Likewise the results obtained from the other
OSes, from T6 to T8, the obtained scores also reflect the direct
APIs influence on the system’s performance.

3) Zephyr: Similarly to RIOT, Zephyr follows a micro-
kernel approach and, therefore, the achieved results follow a
similar pattern. However, in T4, when the system is going
to leave the ISR context, unlike RIOT, Zephyr does not
trigger any context-switching operation. This obviously results
in a higher performance. Accordingly to Table II, the main
performance bottleneck from Zephyr lies on its memory man-
agement subsystem. When comparing the results with T6 and
T7, it is possible to conclude that the process of allocating and
de-allocating memory introduces a significant overhead on the
system due to the implemented memory management schema.

4) Summary: Performance is a requirement in almost every
application, specially when network traffic needs to be handled
by the OS. Considering this, Contiki-NG provides the best
results. However, the application will only run in a cooperative
scheduling policy. Between the other OSes, which implement
a preemptive scheduler, RIOT presents better performance.

C. Time Predictability

In order to evaluate the time predictability of each OS, we
performed a set of micro-benchmarks which encompassed four

typical thread-management APIs: 1) Thread Create, which
allocates TCB resources and puts the thread in the ready
state; 2) Thread Resume, which forces a scheduling point to
the appointed thread; 3) Thread Suspend, which suspends the
execution of a specific task; and 4) Thread Delete, which
reverses what was done in thread creation. For measuring the
execution time of each API, we have configured a timer to
start counting on the exact instruction before the API call,
and to stop counting the instruction after the function return.
However, in some cases, a scheduling point is forced by the
API, and therefore, the system resumes its execution in a
different location. In such cases, the timer stops counting right
after the context restoring operation and before jumping to
the next thread. Additionally, due to the cooperative nature of
Contiki-NG, some of the previous APIs are not provided by the
kernel. Their implementation is mostly based on preprocessor
macros and polling mechanisms, making the time measure-
ment incoherent with the remaining OSes. For this reason the
Thread Suspend API was not tested for Contiki-NG.

In the context of these experiments, we have used the pre-
emptive context switching benchmark (T3) from the Thread-
Metric Suite to evaluate the effect of changing parameters such
as: (i) the number of tasks (from 5 to 20); (ii) the priority
of tasks (from 1 to 32); and (iii) the priority gap between
tasks (from 1 to 5, when possible). Lastly, all experiments
were repeated for different network configurations, i.e., idle
(without any traffic) and active (all packets are accepted). The
reason to present results for the active network state is because
it represents the worst case scenario, i.e., the system has a
higher workload. Fig. 3 depicts the achieved results, where the
bars represent the number of clock cycles that each specific
API takes in its execution time, while the lines represent the
minimum and maximum measured values (jitter).

1) Contiki-NG: As aforementioned, for Contiki-NG the
Suspend API was not evaluated. According to Fig. 3, for
the idle network configuration, Contiki-NG presents the worst
predictability among the three OSes under evaluation. This is
due to the cooperative nature of Contiki-NG, which leads to
higher amounts of code that can be preempted by interrupts.
Another interesting conclusion is that the predictability of
the OS is not affected by the network configuration, as the
variation is similar for the active network configuration.

2) RIOT: RIOT presents the best time predictability (less
variation) among all experimented OSes, with the exception



Fig. 3: Time predictability evaluation results.

TABLE III: Memory footprint (in KB).

OS RAM Flash

Contiki-NG 29.8 50.6

RIOT 33.0 59.9

Zephyr 52.9 130.5

for one test case scenario: the Suspend API in the idle network
configuration. In this case, the variation is minimal, when
compared with the best results (Zephyr) on the same scenario.
It happens because the scheduler implementation on RIOT
uses a circular list of threads and Zephyr uses a generic linked
list. Another fact worth to highlight is that the variation is kept
small and constant among both network configurations for the
Create, Suspend, and Delete APIs. For the Resume API there
is a significant lack of timing predictability when all packets
are intended to be accepted.

3) Zephyr: Zephyr presents, on average, the highest amount
of variation across all OSes. This happens because every event
on Zephyr, e.g., system calls or interrupts, is handled by the
kernel in a privileged mode, which implies a processing mode
switch every time it happens. Whenever an interrupt needs
to be attended, the kernel is invoked to manage the event.
However, the system not always requires a context-switch,
which is the place that by default stops the timer and measures
the API execution time. Such condition leads to an exceedingly
high jitter at run-time, as the time is not measured when it is
supposed to. While this is not fully intended to be measured,
any workaround would require major changes in the internals
of the kernel to modify its default behavior.

4) Summary: For use case applications that impose hard
real-time deadlines, e.g. industrial IoT, a deterministic and
predictable system is mandatory. Therefore, among the eval-
uated OSes, RIOT have shown the best time predictability,
which lead us t o conclude that this OS is the best option for
applications that require real-time.

D. Memory Footprint
To assess the memory footprint of each OS, we measured

the required amount of RAM and Flash memory needed by
both the kernel and application. By assessing the memory
footprint we aim at classifying each OS accordingly to the
IETF device class required by each OS for this application.

Table III summarizes the memory required by each OS,
including the generated firmware when all OS services are

selected along with the network stack protocols. The obtained
results show that, on average, the required amount of RAM for
Contiki-NG, RIOT, and Zephyr, are, respectively, around 29.8
KB, 33.0 KB, and 52.9 KB. By its turn, the required Flash
memory is 50.6 KB, 59.9 KB, and 130.5 KB. Such values are
not only related to the OS itself, but also with network stack
implementation (unique in each OS).

Summary: For the given setup and network stack configu-
ration, Contiki-NG and RIOT can be used in a class 1 device
while Zephyr demands for a class 2. This is due to the required
amount of RAM needed to accommodate both system and user
data. Such requirement is highly related to the network stack
features that, for the selected configuration, enables a set of
protocols needed for the experiments with network.

E. Power Evaluation

Lastly, we managed to assess the power consumption, at
the SoC level (excluding on-board peripherals and the radio
transceiver), that each OS requires for a specific benchmark.
Table IV shows the average power consumption by the SoC
during a fixed time period, in which the system is switching
among five threads, similarly to T3. Additionally, all the tests
were performed with the network in both idle and active states.
According to the data-sheet, for the same clock frequency
and voltage supply, the SoC should consume around 37 mW.
Hence, all the results depicted in Table IV are coherent
with the results presented in the previous sections. RIOT
and Contiki-NG have similar power consumption, with RIOT
being nearly 5% better, corroborating the results from the
previous evaluations. On the other hand, Zephyr presents
a higher power consumption, also emphasizing the results
from all other experiments, where the lower performance
and increased memory footprint are here reflected. Across all
OSes, a slight increase in the power consumption is observed
when there is traffic on the network. Despite this increment
being minimal, 6,8% on Contiki, 2,6% on RIOT, and 0,4% on
Zephyr, it is due to the number of times the system is being
interrupted to attend network requests and run the related code.

Summary: The power consumption of an IoT device is a
major concern, specially when powered by batteries. Despite
resorting to sleep modes, the final application scenario often
seeks for software that does not incur in additional power
wastes. In this regard, Contiki-NG and RIOT provide the best
results, when compared with Zephyr.



TABLE IV: Power consumption (in mW).

OS Idle Network Active Network

Contiki-NG 44,652 47,691

RIOT 46,022 46,144

Zephyr 54,483 54,658

V. CLOSING DISCUSSION

Across all OSes, it was possible to observe that when the
packets need to be forwarded to another node, the performance
and determinism degradation reaches its peak (application-
specific tasks that could be also performance-consuming, such
as sensors reading and heavy-processing algorithms, are not
being considered). This effect is caused by the fact that not
only the packet needs to be rejected, but also a new packet
needs to be created, with all necessary changes regarding
addressing and protocol data. Another point that is valid to all
OSes is that the influence of rejecting packets is always smaller
than accepting. When a packet is meant to be rejected, it is
mainly discarded in the lower layers, e.g., MAC or IP, which
means that instead of being forwarded through the entire stack,
fewer software tasks need to be executed, and thus, the system
is free to perform other tasks earlier. Contrarily, when a packet
is to be accepted, it is the upper layer that checks its validity,
inherently requiring more processing cycles. Table V depicts
a subjective comparison of the evaluated OSes.

1) Performance Evaluation: Regarding the performance,
and considering the results from T1 as the baseline with the
network configuration in idle, it is possible to compare the
three OSes among each other. This is due to the fact that,
in this case, a single thread is performing simple operations
without resorting to any kernel service. Among all OSes,
Zephyr provides approximately 25% less performance.

Comparing the data from T6, T7, and T8, it is possible
to argue that: 1) for the conducted experiments, the message
queue system on the microkernel-based OSes perform slightly
worse than in Contiki-NG; 2) semaphores on Zephyr are
considerably better than the other two, despite this OS having
an overall worse performance; and 3) the dynamic memory
management system of Zephyr is far worse than the other two,
due to the overhead induced by its implementation. The last
column of Table II shows the average performance degradation
associated with the different network states. Each percentage
refers to its own OS baseline illustrating the degradation
relative to the system without network traffic. Taking this
into consideration, it is possible to understand the influence
of the default network stack on each system, and the kernel’s
ability to attend the stack demands. Zephyr reveals the worst
performance when the network is active, due to the increased
overhead of its kernel operations, leading to an overall perfor-
mance worse than other OSes. Contrarily, Contiki-NG has the
least degradation under the same conditions, given the fact that
its scheduling mechanisms do not involve extensive operations
of context-switching. On the other hand, RIOT stands in the
middle, balancing its performance with the advantages of a
microkernel architecture.

TABLE V: Qualitative comparison of the evaluated OSes.

OS Network
State

Performance Time Pre-
dictability

Memory
Footprint

Power
Consumption

Contiki-NG Idle • • • • • ◦ • • • • • •
Active • • • • • ◦ • • ◦

RIOT Idle • • • • • • • • ◦ • • •
Active • • ◦ • • • • • •

Zephyr Idle • • ◦ • • ◦ • ◦ ◦ • • ◦
Active • ◦ ◦ • ◦ ◦ • • ◦

2) Real-Time Evaluation: Regarding the determinism, both
initialization and clean-up stages of the majority of systems
can be neglected since these occur only once. Hence, it is
important to focus on the analysis of the kernel functions
that are used constantly throughout the system’s life cycle.
Moreover, the presence of network traffic greatly affects the
determinism of all OSes, given that the system is continually
being interrupted when new packets are received by the radio
interface. Additionally, on all OSes, the network stack is
implemented in a monolithic fashion with the kernel, which
can cause interference with other OS services.

3) Memory Footprint Evaluation: The resources consumed
by the OS are directly related to the system’s power consump-
tion. Memory is usually the most power-consuming compo-
nent on embedded devices, which is reflected in the performed
evaluations. However, OSes that are mostly implemented with
static resources, usually incur on a higher amount of memory,
which greatly increases their power consumption. Contrarily,
using dynamic management of resources, and despite increas-
ing their memory footprint, can be a determining factor in
reducing the system’s energy consumption.

VI. CONCLUSIONS AND FUTURE WORK

In this article we present the requirements and characteris-
tics of the IoT ecosystem from a low-end embedded system
point of view. These requirements are reflected on features
that are expected from the system software running on such
devices, and therefore not every OS fits all device types. Three
different OSes (Contiki-NG, RIOT, and Zephyr), chosen by
their availability, openness, and their kernel internals singular-
ities, were thoroughly studied and benchmarked considering
the IoT-related requirements. Such benchmarks, and other
important experiments (real-time, power consumption, and
memory footprint), were performed by running the Thread-
Metrics Benchmark Suite over the default configuration of
each OS while varying the network state (idle, packets to be
accepted, and packets to be rejected).

Obtained results reflect their differences and the influence
of the kernel-specific implementation, along with the default
network stack support. Such differences can affect the overall
system’s performance, memory footprint, and power consump-
tion. Considering the target application devices, i.e., edge low-
end devices, we can roughly conclude that when real-time
is not a requirement, Contiki-NG can be a great choice for
applications where the power consumption and the memory
footprint are a priority. By its turn, when real-time is a
demand, RIOT proved to provide a good balance between



performance and real-time capabilities. Hereafter, as proposed
by the several development stages of ChamelIoT [24], future
work will encompass a deep study on each OS network stack
implementation and the exploration of hardware acceleration
for what has been deemed a bottleneck. This kind of approach
has somehow been been proposed with CUTE mote, where
network-related tasks are already being accelerated, such as
the IEEE 802.15.4 and 6LoWPAN standards [25,26]. However,
new modules that hinder the system might emerge and allow
new solutions to be deployed.

REFERENCES

[1] C. Perera, C. H. Liu, S. Jayawardena, and M. Chen, “A Survey on
Internet of Things From Industrial Market Perspective,” IEEE Access,
vol. 2, pp. 1660–1679, 2014.

[2] M. Chernyshev, Z. Baig, O. Bello, and S. Zeadally, “Internet of Things
(IoT): Research, Simulators, and Testbeds,” IEEE Internet of Things
Journal, vol. 5, no. 3, pp. 1637–1647, June 2018.

[3] H. Sundmaeker, P. Guillemin, P. Friess, and S. Woelfflé, “Vision and
Challenges for Realizing the Internet of Things,” Cluster of European
Research Projects on the Internet of Things, EU Commision, 04 2010.

[4] M. Chiang and T. Zhang, “Fog and IoT: An Overview of Research
Opportunities,” IEEE IoT Journal, vol. 3, no. 6, pp. 854–864, Dec 2016.

[5] P. Narendra, S. Duquennoy, and T. Voigt, “BLE and IEEE 802.15.4 in
the IoT: Evaluation and Interoperability Considerations,” in Internet of
Things. IoT Infrastructures, Cham, 2016, pp. 427–438.

[6] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and
flexible operating system for tiny networked sensors,” in 29th Annual
IEEE International Conference on Local Computer Networks, Nov 2004,
pp. 455–462.

[7] E. Baccelli, C. Gündoǧan, O. Hahm, P. Kietzmann, M. S. Lenders,
H. Petersen, K. Schleiser, T. C. Schmidt, and M. Wählisch, “RIOT:
An Open Source Operating System for Low-End Embedded Devices in
the IoT,” IEEE IoT Journal, vol. 5, no. 6, pp. 4428–4440, Dec 2018.

[8] Zephyr Project. Zephyr OS. [Online]. Available: https://www.
zephyrproject.org/

[9] F. Javed, M. K. Afzal, M. Sharif, and B. Kim, “Internet of Things
(IoT) Operating Systems Support, Networking Technologies, Applica-
tions, and Challenges: A Comparative Review,” IEEE Communications
Surveys Tutorials, vol. 20, no. 3, pp. 2062–2100, 2018.

[10] O. Hahm, E. Baccelli, H. Petersen, and N. Tsiftes, “Operating Systems
for Low-End Devices in the Internet of Things: A Survey,” IEEE IoT
Journal, vol. 3, no. 5, pp. 720–734, Oct 2016.

[11] Y. B. Zikria, H. Yu, M. K. Afzal, M. H. Rehmani, and O. Hahm,
“Internet of Things (IoT): Operating System, Applications and Proto-
cols Design, and Validation Techniques,” Future Generation Computer
Systems, vol. 88, pp. 699 – 706, 2018.

[12] T. B. Chandra, P. Verma, and A. K. Dwivedi, “Operating Systems
for Internet of Things: A Comparative Study,” in Proceedings of the
Second International Conference on Information and Communication
Technology for Competitive Strategies, 2016, pp. 47:1–47:6.

[13] M. E. C. Bormann and A. Keranen, “Terminology for Constrained-
Node Networks,” Internet Requests for Comments, Internet Engineering
Task Force (IETF), RFC 7228, May 2004. [Online]. Available:
https://tools.ietf.org/html/rfc7228#page-11

[14] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of Things: A Survey on Enabling Technologies,
Protocols, and Applications,” IEEE Communications Surveys Tutorials,
vol. 17, no. 4, pp. 2347–2376, Fourthquarter 2015.

[15] T. Watteyne, X. Vilajosana, B. Kerkez, F. Chraim, K. Weekly, Q. Wang,
S. Glaser, and K. Pister, “OpenWSN: A Standards-Based Low-Power
Wireless Development Environment,” Wiley Transactions on Emerging
Telecommunications Technologies, vol. 23, pp. 480–493, 08 2012.

[16] A. Dunkels, “Design and implementation of the lwIP TCP/IP stack,”
Swedish Institute of Computer Science, vol. 2, 03 2001.

[17] A. Milenković, C. Otto, and E. Jovanov, “Wireless sensor networks for
personal health monitoring: Issues and an implementation,” Computer
Communications, vol. 29, no. 13, pp. 2521 – 2533, 2006, wirelsess
Senson Networks and Wired/Wireless Internet Communications.

[18] X. Krasniqi and E. Hajrizi, “Use of IoT Technology to Drive the
Automotive Industry from Connected to Full Autonomous Vehicles,”
IFAC, vol. 49, no. 29, pp. 269 – 274, 2016, 17th IFAC Conference on
International Stability, Technology and Culture TECIS 2016.

[19] T. Gomes, P. Garcia, S. Pinto, J. Monteiro, and A. Tavares, “Bringing
Hardware Multithreading to the Real-Time Domain,” IEEE Embedded
Systems Letters, vol. 8, no. 1, pp. 2–5, March 2016.

[20] J. Granjal, E. Monteiro, and J. S. Silva, “Security for the Internet of
Things: A Survey of Existing Protocols and Open Research Issues,”
IEEE Communications Surveys Tutorials, vol. 17, pp. 1294–1312, 2015.

[21] S. Pinto and N. Santos, “Demystifying Arm TrustZone: A Comprehen-
sive Survey,” ACM Computing Surveys, vol. 51, no. 6, pp. 130:1–130:36,
Jan. 2019.

[22] S. Pinto, H. Araujo, D. Oliveira, J. Martins, and A. Tavares, “Virtualiza-
tion on trustzone-enabled microcontrollers? voilà!” in 2019 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
April 2019, pp. 293–304.

[23] J. L. Hennessy and D. A. Patterson, “A new golden age for computer
architecture: Domain-specific hardware/software co-design, enhanced
security, open instruction sets, and agile chip development,” in 2018
ACM/IEEE 45th Annual International Symposium on Computer Archi-
tecture (ISCA), June 2018, pp. 27–29.

[24] M. Silva, A. Tavares, T. Gomes, and S. Pinto, “ChamelIoT: an Agnostic
Operating System Framework for Reconfigurable IoT Devices,” IEEE
IoT Journal, pp. 1–1, 2019.

[25] T. Gomes, F. Salgado, A. Tavares, and J. Cabral, “CUTE Mote, A
Customizable and Trustable End-Device for the Internet of Things,”
IEEE Sensors Journal, vol. 17, no. 20, pp. 6816–6824, Oct 2017.

[26] T. Gomes, F. Salgado, S. Pinto, J. Cabral, and A. Tavares, “A 6LoWPAN
Accelerator for Internet of Things Endpoint Devices,” IEEE Internet of
Things Journal, vol. 5, no. 1, pp. 371–377, Feb 2018.

Miguel Silva is a PhD candidate at the University of
Minho. During his master’s thesis, he worked in the
development and testing of automotive instrument
clusters for a major industry company, and late he
joined a research project related with video and
multimedia. During these, he refined his knowledge
of embedded systems, system software, and connec-
tivity on low-end devices. At the moment, his focus
is the development of an agnostic operating system
in hardware for the Internet of Things. Contact him
at miguel.silva@dei.uminho.pt.

David Cerdeira is a PhD candidate at the Univer-
sity of Minho. He worked as researcher developing
innovative human machine interfaces for vehicles,
granting him a strong background in embedded sys-
tems, and system programming. Having specialized
in embedded systems, and studying development of
secure system in his master’s thesis, right now he is
focusing on leveraging Trusted Execution Environ-
ments for edge computing, and IoT. Contact him at
david.cerdeira@dei.uminho.pt.

Sandro Pinto is a Research Scientist and Invited
Assistant Professor at the University of Minho, Por-
tugal. He holds a Ph.D. in Electronics and Computer
Engineering. During his Ph.D., Sandro was a visiting
researcher at the AIT and University of Wurzburg.
Sandro has a deep academic background and several
years of industry collaboration focusing on operating
systems, virtualization, and security for embedded
and IoT-based systems. He has published several
scientific papers on top-tier conferences/journals.
Contact him at sandro.pinto@dei.uminho.pt.

Tiago Gomes has received the master’s degree in
telecommunications engineering and Ph.D. degree in
electronics and computers engineering from the Uni-
versity of Minho, Braga, Portugal. He is a Research
Scientist and Invited Professor with the University
of Minho. His current research interests include em-
bedded systems hardware/software co-design for re-
source constrained wireless devices, wireless proto-
cols for low-rate wireless personal area networks and
network protocols for the Internet of Things low-end
devices. Contact him at mr.gomes@dei.uminho.pt.


