
LP805X: A Customizable and Low Power 8051 Soft

Core for FPGA Applications

T. Lobo, S. Pinto, V. Silva, S. Lopes, J. Cabral, A. Tavares

Centro Algoritmi – University of Minho

Portugal

{tiago.castro, sandro.pinto, vitor.silva, sergio.lopes,

 jorge.cabral, adriano.tavares}@algoritmi.uminho.pt

S. Yoowattana, W. Sritriratanarak, M. Ekpanyapong

Asian Institute of Technology

Thailand

{s.yoowattana, w.sritriratanarak, mongkol}@ait.ac.th

Abstract- — In today’s advanced technological age, embedded
and real time systems have become ubiquitous, covering a wide
range of applicability. As a result there is an ever growing need

for low power capabilities along with reasonable performance,
thus presenting a virtual demand for power-aware devices. The
purpose of this work was leveraging key techniques and

technologies such as design laziness, componentware design,
generative design, separation of mechanism and policy, voltage-
frequency island, state encoding, clock gating, and operand

isolation, and then investigating their effects while designing an
energy and power-conscious microcontroller based on 8051 ISA
(Instruction Set Architecture) without disregard to silicon area,

required application functionalities and performance.
Simulations show that our purposed 2 stage pipeline system with
built-in hybrid scheduler operates at 230µW@1MHz.

Keywords— Processor design, power-aware, design laziness,

componentware, generative design, voltage-frequency island,

power and clock gating.

I. INTRODUCTION

For most electronic systems embedding microcontroller

being developed today, the emphasis on active low-power

management, performance, area, reliability and robustness is

increasing and so, becoming critical issues. Each of these

systems is unique and highly specialized to certain hardware

and application domains, and among them are the following:

(1) consumer, wireless and handheld devices, (2) home

electronics and (3) tethered electronics [1]. With such a

pervasive pressure to reduce power and increase functionality

and performance, a holistic methodology that is able to design

complete systems from the ground up and deliver a total

platform for system integration, applications development,

and system validation, represents the future of EDA [1, 2].

Thus, moving forward on the energy conservation path

requires a careful management of the interactions between the

different layers of abstraction as well as performing a global

tradeoff analysis [2]. As the design effort in managing power

and performance metrics has ramifications for engineering

productivity (i.e., it impacts schedules and risk), a

methodology will be partially described for small embedded

system processor design supported by a development

ecosystem driven by key techniques and technologies such as

[1, 3, 4, 5, 6, 7]:

1. Voltage-Frequency Island to dynamically change

the clock frequencies and potentially voltages of the selected

functional blocks driven by dynamic workload;

2. State Encoding to reduce the switching activity by

shortening the hamming distance between subsequent

executed instructions;

3. Clock Gating to disconnect the flip-flops clock from

the clock tree and reducing power both from the flip-flops and

the clock tree;

4. Power gating to shut down the power at non-

necessary blocks to reduce the leakage power;

5. Asynchronous core to reduce both the clock skew

problem and the clock tree which normally requires a very

large silicon area with the associated increases in power

dissipation and limits the microcontroller speed;

6. Operand Isolation to reduce power dissipation in

datapath blocks controlled by an enable signal that freezes

their inputs when their output are not needed;

7. Separation of Mechanism and Policy to improve

system's flexibility in response to system designer

requirements as well as to leverage reusability and stability,

instead of hardwiring policy and mechanism together;

8. Componentware, Generative and Lazy design to

promote reuse creating modular structures for the 8051 soft

core making it a good prototyping vehicle and thus, providing

system designers a conduit to quickly experiment potential

processor configuration and optimize the soft core for a

particular use (e.g., using the minimum set of needed

components), without requiring detailed knowledge of the

whole system. Each functional unit was developed as a

separate module and modeled using a combination of Verilog

code and Xpand template [8].

Outline Due to the limited space, the focus will be only on

the design of a tailored 8051-based processor as part of a

holistic system-level design methodology for small embedded

systems design that leverages semantic interoperability

between adjacent system abstraction layers to fully enable

power, performance and area convergence. The semantic

interoperability between abstraction layers from application

down to processor layer is modeled ontologically. Section II

briefly presents some similar works. Section III presents the

key features of LP805X, describes the detailed design of each

module, and the integration of top-level module (i.e., the

LP805X core) by individual instantiation of previous

designed modules. Section IV starts with the identification of

the most power-hungry components and then describes the

techniques adopted for power optimization at architectural

level. Section V presents and discusses some experiments

carried out to assess LP805X’s behavior in terms of logical

response, performance, power consumption and energy

efficiency. Section VI concludes.

II. RELATED WORK

The choice of the 8051 microcontroller is due to its high

popularity as its CISC architecture became an industry

standard used in several small embedded systems, and the

accumulated experience using it in several in-house

developed projects. There are huge amounts of work related

to power-conscious processor design and this proposal is a

fusion of ideas and techniques applied in [3, 4, 5] and

extended to leverage a laziness design paradigm of

microcontroller components or modules.

Chang-Jiu Chen et al. [4] proposed a novel pipelined

asynchronous 8051 microcontroller as an answer to low

power, reliability, and robustness issues. The 8051

microcontroller is implemented with Balsa language which is

a CSP-based asynchronous HDL and then synthesized into

Xilinx netlist by the Balsa synthesis tool.

Francesco Iozzi, et al. [3] described an 8051 IP core

applying several RTL techniques such as state encoding,

clustered clock gating and operand isolation for minimizing

the switching activity while avoiding performance loss and

preserving the reusability of the macrocell.

Sakina [5] described an 8051 microcontroller soft core in

the Verilog HDL with each functional developed as a separate

module, and tested for functionality using the open-source

VHDL Dalton model as benchmark. Although this work

doesn’t focus on power reduction, it tried to promote some

modularity with the modules integrated to operate as

concurrent processes in the 8051 soft core.

III. III. LP805X FEATURES AND COMPONENTIZING

In spite of the potentially low-power operation of

asynchronous core compared to the synchronous one due to

its hazard-free (i.e., no energy wasted in spurious transitions)

and event-driven properties (i.e., only operating parts

consume energy) [7], the focus here will be only on the latter

as the former is still a work in-progress. The proposed

synchronous 8051 soft core, as shown in Fig. 1, should be

modular and customizable to applications requirements, and

the following key features were supported:

1. Compatibility with 8051 standard ISA (Instruction

Set Architecture) and enough flexibility to be customizable

according to the system designer needs;

2. Up to 256 bytes of internal RAM (Random Access

Memory) should be addressable, according to 8051 ISA and

with SFR registers added as needed;

3. Up to 64 KB of program memory and external

memory should be addressable, and allowing the use of a

hybrid model integrating on-chip and off-chip memory;

4. At least four 8-bit I/O ports, bit-addressable and bi-

directional which can be multiplexed for alternate functions;

5. Programmable multi-priority interrupt with

individual interrupt line for each device;

6. A power control unit capable of controlling statically

and dynamically several parts of the microcontroller;

7. Communication between different regions of the

microcontroller possibly working at different voltage and

frequency levels;

8. Reduce to the minimal the number of clock cycles

required for each instruction as it is directly proportional

related to the dissipated power. All SFRs are part of the same

bus which is shared by all three types of peripherals: (1)

internal to external and external to internal signal converters,

(2) stub controller for internal signals with no external

interface and (3) hybrid peripherals which combine the two

previous functions.

A. The CPU: Control Unit and 2-Stage Pipelined

Datapath

Although pipelining had been known as a popular

technique to increase the processor’s throughput, it is also

used today to reduce power consumption as a pipelined

execution unit presents a shorter stage delay than a non-

pipelined execution unit [7]. It is therefore possible to work at

the same operating frequency while reducing the supply

voltage which helps to save a lot of dynamic power.

However, the growth in latch or register count with pipeline

depth in an asynchronous core or synchronous one induces

additional hardware, affecting consequently the power

consumption of core which shifts the optimal design point to

shorter pipelines.

Thus, the first microarchitectural change was translating the

standard 8051 CISC-ISA into RISC style micro-operations,

allowing the use of a RISC-style execution core supported by

a low-power 2-stages pipelined datapath (Fig. 2) and control

structures to ensure the required power/performance tradeoff.

Instructions are fetched from memory in the first pipeline

stage, while the instruction’s behavior will be performed in

the second stage. A hardwired control unit which directly and

Fig. 1 LP805X abstract block diagram

indirectly (i.e., some signal control are delegated to smaller

and local control units, e.g., the ALU operand enabling)

controls all control signals of the core. In doing so, it will be

easier to pinpoint and fix possible errors as well as adding

new functionalities without changing the main unit control.

The control unit was implemented as a finite state machine

(FSM) named ST_STATE (Fig. 3) and is strongly

coordinated with instruction decoding by using Verilog

constructs, enabling cross-module connections optimization at

RTL level. LP805X’s CPU will transit among three control

states ST_RESET, ST_WORK and ST_FIEI, which resets all

internal registers to their default values, manages all

instructions consuming more than one clock cycle, and

fetches instructions and execute the micro-operations of the

previous instruction, respectively. Each ST_WORK state is

self decremental, e.g., being in ST_WORK_3 at clock cycle t,

means that at t+1 the FSM will transit to ST_WORK_2. The

ST_STATE FSM is split in two parts, consisting of

combinational control signal outputs and sequential control

signal outputs to enable better and easier management of

operations involving memory or file register reading in just

one clock cycle, without using asynchronous memory that are

much more expensive and consuming lookup tables instead of

FPGA dedicated memory blocks. Fig. 4, partially shows the

activities during the simulation of “MOV A, SP”: (1) the blue

line marks the decoding of MOV A, (direct) instruction and

(2) in the next clock cycle starts the next instruction and the

content of the SP SFR is read, as shown by the blue arrow. To

avoid any occurrence of RAW (Read After Write) data hazard

in the same clock cycle, as only one cycle later register A will

have available a copy of SP content, register forwarding was

implemented. The above splitting of ST_STATE in

combinational and sequential parts with the combinational

part decoded by a local control unit leverages reduction of

temperature (and consequently power reduction) and also

dynamic power due to shorter travelled distance of data in the

datapath.

The remaining signals which present less variability and

shorter control word width are managed by the main control

unit. This strategy was applied at RTL level to promote (1)

laziness design and greater flexibility in HDL code

management and (2) defeating synthesis tools cross-module

optimization weakness. Thus, manual placement was applied

since few are the optimizations that synthesis tools can

forward to the placement and route back-end. Additionally,

binary encoding was applied to the few states of the control

unit, defeating power consumption.

B. The Decoder

Given that some 8051 instructions are split and

differentiated at register level, e.g., the ISA differentiates by

opcode the following two instructions “MOV R7,

#immediate” from “MOV R6, #immediate”, a strategy was

devised using the Verilog casez construct to group

instructions based on similar operations, like the two

presented above. Such register grouping of instructions is

driven by expression (1) and it enables greater saving of

power compared to a strategy based on a full opcode width,

which should be dictated by a lookup-table overhead. Fig. 5

shows both opcodes 8’b1110_1000 and 8’b1110_1010

stacked into the same case statement, allowing a more

compact and intuitive implementation. All instruction

operands will be easily decoded except for register grouping

instructions as they represent variability at operands. Based

on expression 1, variable operands are decoded using those

instruction bits masked with logical value z, i.e., the bits at

don’t care indexes (e.g., OPCODE[2:0]) were used to obtain

the register reference number.

R_i←{R_0,R_1 }

R_N←{R_0,R_1,R_2,R_3,R_4,R_5,R_6,R_7} (1)

C. Other LP805X Components

Additionally to the power optimization modules which will

be described next, other LP805X components (e.g., Memory

Interface, ROM Subsystem, Internal Data Memory Subsystem

and ALU) and peripherals (e.g., pseudo random number

generator, watchdog timer and AES cryptography) were also

implemented and integrated, but they will not be elaborated

on due to limited space.

The memory interface module supports several memory

types which are statically decided according to application

specifics when LP805X is synthetized, avoiding extra power

consumption overhead compared to a dynamic

configurability. It consists of interfaces to the internal data

Fig. 2 LP805X’s 2-Stages Pipelined Datapath

Fig. 3 ST_STATE State Diagram

Fig. 4 Partial simulation of MOV A, SP

memory, to the external data memory and to the program

memory (Fig. 1), with the first two interfaces based on a

Wishbone bus optimized for low power consumption. A

speculative handshake was implemented which predicts when

read and write accesses are successfully concluded in the

absence of a bus grant mechanism.

The program memory module was implemented by a 32-bit

dual-port memory, avoiding multiple clock cycles reading for

8051-ISA 3-bytes length instructions. It can be customizable

to use memory implementations offered by several FPGA

providers as well as RTL codified memory. Additionally, it

can also be configured to the application required size by the

development ecosystem that integrates the RTOS.

The internal data memory module is split into separate

components due to different datapaths related to SFR and to

data memory, and also two special strategies is presented to

guarantee hazard-free data read. The first one adds extra logic

to the bus in order to bypass the read value instead of writing

it back to memory, in case of a write back activity over the

same address. The second one is based on a RTL codified

memory with a built-in hazard-free mechanism, enabling

synthesis tools to use dedicated FPGA memory resources that

internally support hazard resolution. The choice between the

two strategies is available through the development

ecosystem. A local control unit was implemented to tackle

any indirect addressing mode overhead in terms of power and

performance by controlling additional register banks to

accommodate copies of registers R0 and R1. Each SFR is

individually created using 1-byte wide flip-flops and a

module was implemented to manage several classes of SFR.

Targeting the modularity, the SFRs can also be connected to

the SFR bus using 3-state buffers and even using a

combination of both.

Due to the scarce power gating capability at FPGA level,

the ALU was implemented following a hybrid architecture

combining tree with chain structures to execute 16 different

instructions, and LUT combination was applied to synthetize

16-input multiplexers into one slice. To accommodate the

other instructions, the carry flag was used to group ADD and

ADDC, and INC and DEC, each in just one instruction. Also,

a local control unit for selecting ALU operands was

implemented fully separated from the ALU itself, avoiding

the placement of operand decoding far from the data source

and consequently reducing dynamic power consumption.

The development ecosystem plays an important role

connecting and optimizing key parts of the design, such as

automatic module insertion and parameterization. Fig. 6

illustrates how a peripheral module (i.e. AES) can request the

insertion of another module into the design. This is achieved

by the use of the System:ModRequest option that allows a

module to request another. Similarly, but more specific to the

module, the option System:MPOptions was utilized to specify

the default source seed to the random number generator. By

making use of Verilog parameters, a seamless integration

with the development ecosystem backend was attained,

allowing customization of the RTL according to the

ecosystem specifications. Fig. 7 shows the integration of the

parameterization alongside with the RTL source code in

respect to the option System:MPOptions which dictates the

default seed for the pseudo random number generator.

IV. LP805X ARCHITECTURAL-LEVEL POWER

OPTIMIZATION

To guide the LP805X power optimization at architectural

level, the results of the studies presented in [3, 9] were took

into account and later extended to support system-level power

optimization driven by the application needs under a RTOS

(Real-Time Operating System) control. They started by

identifying the most power consuming blocks, on which

power optimization efforts should be concentrated using Keil

Software Dhrystone test code, and then the power

consumption of the identified blocks (i.e., Control Unit,

UART, Timer, ALU) were estimated with Synopsys™ Power

Compiler.

A. The Power Control Unit

This module basically offers multiple clock frequencies and

sleep mode services. The former was implemented to divide

the clock frequency into multiple of two and is driven by a

binary counter, while the latter was implemented to reduce to

zero the clock frequency of a given module and its design is

FPGA’s supplier dependent.

As a generic comparison between clock resources provided

by Xilinx and Altera architectures, the Altera clock-tree

resources are able to combine a greater number of inputs,

while with Xilinx the same effect will be achieved using

Fig. 5 Use of casez construct to implement register grouping

Fig. 6 Module configuration

several bufgmux blocks (notwithstanding considering other

internal restrictions). However, to guarantee a safe clock-

frequency transition, bufgmux resources were used to select

the clock-frequency and drive it to dedicated clock bus. A

new output was added to the clock frequency module by

taking advantage of the two bufgmux entries to simulate two

different clock sources. As shown in Fig. 8, the two entries

will be the clock source selected by the SFR configuration

and the clock source currently active.

Knowing both clock sources and the flag register that

demand clock source change, SFR CLKSR, the order of the

bufgmux resource input will be accordingly changed (Fig. 9).

For Altera FPGA family, the clock-gating strategy presented

in Fig. 10 was adopted to ensure a glitch-free signal and later

changed using OR-gate instead of AND-gate as LP805X core

implementation follows posedge clock (i.e., positive edge

clock transition). Additionally, this model can automatically

be converted to a flip-flop clock enable model by enabling

EDA tools options in corner cases (e.g., the maximum clock

frequency is degraded above an acceptable value). Note that

the flip-flop enable strategy was used throughout all LP805X

core but to switches off the clock tree. For Xilinx FPGA

architecture, bufgmux resource was used to drive the clock

line to zero.

B. The Power-Aware Scheduler

From a holistic system-level design, a priority-based or

power-aware scheduler can be chosen, but experiments with

the power-aware scheduler reveal an unaffordable clock

cycles consumption and so, the power-aware scheduler was

partitioned between silicon scheduler (see Fig. 11) and

software scheduler (see Fig. 12). A peripheral module was

designed and implemented with two special SFRs dedicated

to the clock-frequency (see Table I) control and it is based on

a weighting value derived from task’s deadlines and WCETs

(Worst Case Execution Time), as dictated by a given

application. Using several and different frequency domains

throughout the LP805X core dictated special support to

synchronize them. The strategy based on dual-position FIFOs

and Dual-port RAM as described in [11] was adopted and

changed to accommodate LP805X micro-architecture. In

doing so, the memory interface module was adapted using

lookup tables to indicate which addresses need such special

control. The control unit was adapted as well enabling it to

generate control signals which ensure safe data travelling

through the asynchronous SFR interface. To provide access

transparency to these SFR registers, the development

ecosystem has built-in C++ TMP (Template

Metaprogramming) artifacts and C macros which can be used

by the application or system programmer.

V. TESTS AND RESULTS

From all of the above strategies, manual placement is

perhaps the one that leaps further away from the laziness and

Fig. 7 Ecosystem managed parameterization

Fig. 8 On-the-fly clock source transition

Fig. 9 Selecting between the old and the new clock sources

Fig. 10 Altera recommended clock-gating strategy [10]

TABLE I. SCHEDULER’S SFR REGISTERS TO BE CONFIGURED WITH THE

WEIGHING VALUE

generative design strategy. Thus, the end user designer is

presented with the choice to: either manual place it himself or

accept the one suggested by the mapper tool.

Up to and during this phase, the design was subject to

several tests in relation to its (1) logic response, (2) raw

performance, (3) power dissipation and (4) Et2. All ISA

verification testbenches passed successfully and will not be

herein referred given limited space. Focusing on a specific

implementation over a Spartan 6, the resource utilization

depicted on Fig. 13 shows that the power control unit has a

negligible area overhead disregarding specific clock resource

utilization (i.e. clock buffers) that is dependent of the needed

flexibility of the final design.

While acknowledging that Et2 should be the main

verification metric, this parameter is variable with the set of

instructions that are executed by a given end user application.

In this sense, power consumption measurements were taken

across a spread range of frequencies. As seen in Fig. 14, the

pack factor has a stronger negative effect over power

consumption as frequency rises. The post-route simulation

predicts a power consumption of 230µW (in respect to the

core as well as some peripherals) at approximately 1MHz

while targeting a Spartan 6 device. The power aware

scheduler calculates the minimum possible frequency while

meeting the deadline at each scheduling point which

considerably degrades the overall system performance. As the

system performance is in line with the needed operating clock

frequency, this led to non-optimal power consumption results

as the lowest frequencies would not be engaged. A hybrid or

hardware aided scheduler allowed for a very significant

reduction of 2440 clock cycles in respect to a purely software

approach.

TABLE II. COMPARISON BETWEEN SOFTWARE AND HYBRID SCHEDULER

 Worst Case

Frequency Best Case Frequency

Software Scheduler 12.2 MHz 6.1 MHz

Hybrid Scheduler 3.5 MHz 762 KHz

*not considering the startup condition at which the CPU starts at

12.2MHz

The power readings of different schedulers varied

according to the tasks and their respective timing information

as well as real world interaction (i.e. I/O operation). Table II

reports the best and worst case scenarios relative to the CPU

 7 6 5 4 3 2 1 0

SCHEDH start enable clock clock clock factor factor factor

SCHEDL factor factor factor factor factor factor factor factor

Fig. 11 Silicon power-conscious scheduler

Fig. 12 Software power-conscious scheduler

Fig. 12 Resource Utilization

Fig. 13 Power Consumption in mW per MHz

Fig. 11 Software power-conscious scheduler

operating frequency in respect to a test case. As power

consumption increases almost linearly with operating

frequency, the hybrid scheduler approach is expected to

outperform the purely software based approach.

VI. CONCLUSIONS AND FUTURE WORK

In this paper a low power customizable 8051

microcontroller designed to be synthesizable manufacturer-

independent while maintaining a set of features managed by

an integrated graphical environment was presented. The

component-based approach allows for a lazy design, as the

IDE is able to optimize most settings according to a set of

requirements. The proposed 2-stage pipeline combined with a

RISC-like instruction set allows both significant reduction of

the CPI and inherent flexibility while adding and maintaining

new sets of features. A multiple frequency approach allows

both CPU and peripherals to operate at different clock

frequencies in a need by need basis. A hybrid power aware

scheduler comprised of both software and hardware

superseded a purely software based approach, helping the

power unit module to cope with the system workload, thus

further reducing power consumption. The overall results show

that it is possible to achieve low power implementations

regardless of the target FPGA device and that it can be finely

tuned by a development ecosystem capable of optimizing the

design at the RTL. Proposed as future work is the

implementation of an asynchronous core to further reduce

power consumption as well as completely enforcing the

holistic development ecosystem by completely integrating all

abstraction layers.

VII. ACKNOWLEDGMENTS

This work is supported by FEDER through COMPETE and

national funds through FCT Foundation for Science and

Technology in the framework of the project FCOMP-01-

0124-FEDER-022674.

REFERENCES

[1] “A Practical Guide to Low-Power Design - User Experience with CPF”.
Internet: http://www10.edacafe.com/link/Power-Forward-Initiative-
Practical-Guide-Low-Power-Design-User-Experience-with-
CPF/25456/view.html, [Dec.. 18, 2012]

[2] “The EDA 360 Vision: The Way Forward for Electronic Design”.
Internet: http://www.cadence.com/eda360/pages/default.aspx, [Dec..
18, 2012]

[3] Iozzi, F.; Saponara, S.; Morello, A.J.; Fanucci, L.; , "8051 CPU core
optimization for low power at register transfer level," Research in
Microelectronics and Electronics, 2005 PhD , vol.2, no., pp. 178- 181,
25-28 July 2005

[4] Chang-Jiu Chen; Wei-Min Cheng; Ruei-Fu Tsai; Hung-Yue Tsai;
Tuan-Chieh Wang; , "A pipelined asynchronous 8051 soft-core
implemented with Balsa," Circuits and Systems, 2008. APCCAS 2008.
IEEE Asia Pacific Conference on , vol., no., pp.976-979, Nov. 30 2008-
Dec. 3 2008

[5] Sakina Rangoonwala , “A VERILOG 8051 SOFT CORE FOR FPGA
APPLICATIONS”, Master Thesis, University of North Texas, August
2009.

[6] Meier, M.; Engel, M.; Steinkamp, M.; Spinczyk, O.; , "LavA: An Open
Platform for Rapid Prototyping of MPSoCs," Field Programmable

Logic and Applications (FPL), 2010 International Conference on , vol.,
no., pp.452-457, Aug. 31 2010-Sept. 2 2010

[7] Christian Piguet. Low-Power Electronics Design. CRC Press 2004
[8] “Eclipse openArchitectureware Modeling”. Internet:

http://www.eclipse.org/modeling/m2t/?project=xpand [Dec 18,2012]
[9] Sergio Saponara; Luca Fanucci; Pierangelo Terreni; , "Architectural-

Level Power Optimization of Microcontroller Cores in Embedded
Systems," Industrial Electronics, IEEE Transactions on , vol.54, no.1,
pp.680-683, Feb. 2007

[10] “Quartus II Handbook Version 12.1”. Internet:
http://www.altera.com/literature/lit-qts.jsp, [Dec.. 18, 2012]

[11] Cliff Cummings. “Clock Domain Crossing (CDC) Design &
Verification”. Internet: .http://www.sunburst-
design.com/papers/CummingsSNUG2008Boston_CDC.pdf [Dec.. 18,
2012]

