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Abstract- — In today’s advanced technological age, embedded 
and real time systems have become ubiquitous, covering a wide 
range of applicability. As a result there is an ever growing need 

for low power capabilities along with reasonable performance, 
thus presenting a virtual demand for power-aware devices. The 
purpose of this work was leveraging key techniques and 

technologies such as design laziness, componentware design, 
generative design, separation of mechanism and policy, voltage-
frequency island, state encoding, clock gating, and operand 

isolation, and then investigating their effects while designing an 
energy and power-conscious microcontroller based on 8051 ISA 
(Instruction Set Architecture) without disregard to silicon area, 

required application functionalities and performance. 
Simulations show that our purposed 2 stage pipeline system with 
built-in hybrid scheduler operates at 230µW@1MHz. 

 
Keywords— Processor design, power-aware, design laziness, 

componentware, generative design, voltage-frequency island, 

power and clock gating. 

I. INTRODUCTION 

For most electronic systems embedding microcontroller 

being developed today, the emphasis on active low-power 

management, performance, area, reliability and robustness is 

increasing and so, becoming critical issues. Each of these 

systems is unique and highly specialized to certain hardware 

and application domains, and among them are the following: 

(1) consumer, wireless and handheld devices, (2) home 

electronics and (3) tethered electronics [1]. With such a 

pervasive pressure to reduce power and increase functionality 

and performance, a holistic methodology that is able to design 

complete systems from the ground up and deliver a total 

platform for system integration, applications development, 

and system validation, represents the future of EDA [1, 2]. 

Thus, moving forward on the energy conservation path 

requires a careful management of the interactions between the 

different layers of abstraction as well as performing a global 

tradeoff analysis [2]. As the design effort in managing power 

and performance metrics has ramifications for engineering 

productivity (i.e., it impacts schedules and risk), a 

methodology will be partially described for small embedded 

system processor design supported by a development 

ecosystem driven by key techniques and technologies such as 

[1, 3, 4, 5, 6, 7]:  

1. Voltage-Frequency Island to dynamically change 

the clock frequencies and potentially voltages of the selected 

functional blocks driven by dynamic workload; 

2. State Encoding to reduce the switching activity by 

shortening the hamming distance between subsequent 

executed instructions; 

3. Clock Gating to disconnect the flip-flops clock from 

the clock tree and reducing power both from the flip-flops and 

the clock tree; 

4. Power gating to shut down the power at non-

necessary blocks to reduce the  leakage power;   

5. Asynchronous core to reduce both the clock skew 

problem and the clock tree which normally requires a very 

large silicon area with the associated increases in power  

dissipation and limits the microcontroller speed; 

6. Operand Isolation to reduce power dissipation in 

datapath blocks controlled by an enable signal that freezes 

their inputs when their output are not needed; 

7. Separation of Mechanism and Policy to improve 

system's flexibility in response to system designer 

requirements as well as to leverage reusability and stability, 

instead of hardwiring policy and mechanism together; 

8. Componentware, Generative and Lazy design to 

promote reuse creating modular structures for the 8051 soft 

core making it a good prototyping vehicle and thus, providing 

system designers a conduit to quickly experiment potential 

processor configuration and optimize the soft core for a 

particular use (e.g., using the minimum set of needed 

components), without requiring detailed knowledge of the 

whole system. Each functional unit was developed as a 

separate module and modeled using a combination of Verilog 

code and Xpand template [8]. 

Outline Due to the limited space, the  focus will be only on 

the design of a tailored 8051-based processor as part of a 

holistic system-level design methodology for small embedded 

systems design that leverages semantic interoperability 

between adjacent system abstraction layers to fully enable 

power, performance and area convergence. The semantic 

interoperability between abstraction layers from application 

down to processor layer is modeled ontologically. Section II 

briefly presents some similar works. Section III presents the 

key features of LP805X, describes the detailed design of each 

module, and the integration of top-level module (i.e., the 



LP805X core) by individual instantiation of previous 

designed modules. Section IV starts with the identification of 

the most power-hungry components and then describes the 

techniques adopted for power optimization at architectural 

level. Section V presents and discusses some experiments 

carried out to assess LP805X’s behavior in terms of logical 

response, performance, power consumption and energy 

efficiency. Section VI concludes. 

II. RELATED WORK 

The choice of the 8051 microcontroller is due to its high 

popularity as its CISC architecture became an industry 

standard used in several small embedded systems, and the 

accumulated experience using it in several in-house 

developed projects. There are huge amounts of work related 

to power-conscious processor design and this proposal is a 

fusion of ideas and techniques applied in [3, 4, 5] and 

extended to leverage a laziness design paradigm of 

microcontroller components or modules.  

Chang-Jiu Chen et al. [4] proposed a novel pipelined 

asynchronous 8051 microcontroller as an answer to low 

power, reliability, and robustness issues. The 8051 

microcontroller is implemented with Balsa language which is 

a CSP-based asynchronous HDL and then synthesized into 

Xilinx netlist by the Balsa synthesis tool. 

Francesco Iozzi, et al. [3] described an 8051 IP core 

applying several RTL techniques such as state encoding, 

clustered clock gating and operand isolation for minimizing 

the switching activity while avoiding performance loss and 

preserving the reusability of the macrocell. 

Sakina [5] described an 8051 microcontroller soft core in 

the Verilog HDL with each functional developed as a separate 

module, and tested for functionality using the open-source 

VHDL Dalton model as benchmark. Although this work 

doesn’t focus on power reduction, it tried to promote some 

modularity with the modules integrated to operate as 

concurrent processes in the 8051 soft core. 

III. III. LP805X FEATURES AND COMPONENTIZING 

In spite of the potentially low-power operation of 

asynchronous core compared to the synchronous one due to 

its hazard-free (i.e., no energy wasted in spurious transitions) 

and event-driven properties (i.e., only operating parts 

consume energy) [7], the focus here will be only on the latter 

as the former is still a work in-progress. The proposed 

synchronous 8051 soft core, as shown in Fig. 1, should be 

modular and customizable to applications requirements, and 

the following key features were supported:  

1. Compatibility with 8051 standard ISA (Instruction 

Set Architecture) and enough flexibility to be customizable 

according to the system designer needs; 

2. Up to 256 bytes of internal RAM (Random Access 

Memory) should be addressable, according to 8051 ISA and 

with SFR registers added as needed; 

3. Up to 64 KB of program memory and external 

memory should be addressable, and allowing the use of a 

hybrid model integrating on-chip and off-chip memory; 

4. At least four 8-bit I/O ports, bit-addressable and bi-

directional which can be multiplexed for alternate functions; 

5. Programmable multi-priority interrupt with 

individual interrupt line for each device; 

6. A power control unit capable of controlling statically 

and dynamically several parts of the microcontroller; 

7. Communication between different regions of the 

microcontroller possibly working at different voltage and 

frequency levels; 

8. Reduce to the minimal the number of clock cycles 

required for each instruction as it is directly proportional 

related to the dissipated power. All SFRs are part of the same 

bus which is shared by all three types of peripherals: (1) 

internal to external and external to internal signal converters, 

(2) stub controller for internal signals with no external 

interface and (3) hybrid peripherals which combine the two 

previous functions. 

 

A. The CPU: Control Unit and 2-Stage Pipelined 

Datapath 

Although pipelining had been known as a popular 

technique to increase the processor’s throughput, it is also 

used today to reduce power consumption as a pipelined 

execution unit presents a shorter stage delay than a non-

pipelined execution unit [7]. It is therefore possible to work at 

the same operating frequency while reducing the supply 

voltage which helps to save a lot of dynamic power. 

However, the growth in latch or register count with pipeline 

depth in an asynchronous core or synchronous one induces 

additional hardware, affecting consequently the power 

consumption of core which shifts the optimal design point to 

shorter pipelines.  

Thus, the first microarchitectural change was translating the 

standard 8051 CISC-ISA into RISC style micro-operations, 

allowing the use of a RISC-style execution core supported by 

a low-power 2-stages pipelined datapath (Fig. 2) and control 

structures to ensure the required power/performance tradeoff. 

Instructions are fetched from memory in the first pipeline 

stage, while the instruction’s behavior will be performed in 

the second stage. A hardwired control unit which directly and 

Fig. 1 LP805X abstract block diagram 



indirectly (i.e., some signal control are delegated to smaller 

and local control units, e.g., the ALU operand enabling) 

controls all control signals of the core. In doing so, it will be 

easier to pinpoint and fix possible errors as well as adding 

new functionalities without changing the main unit control. 

The control unit was implemented as a finite state machine 

(FSM) named ST_STATE (Fig. 3) and is strongly 

coordinated with instruction decoding by using Verilog 

constructs, enabling cross-module connections optimization at 

RTL level. LP805X’s CPU will transit among three control 

states ST_RESET, ST_WORK and ST_FIEI, which resets all 

internal registers to their default values, manages all 

instructions consuming more than one clock cycle, and 

fetches instructions and execute the micro-operations of the 

previous instruction, respectively. Each ST_WORK state is 

self decremental, e.g., being in ST_WORK_3 at clock cycle t, 

means that at t+1 the FSM will transit to ST_WORK_2. The 

ST_STATE FSM is split in two parts, consisting of 

combinational control signal outputs and sequential control 

signal outputs to enable better and easier management of 

operations involving memory or file register reading in just 

one clock cycle, without using asynchronous memory that are 

much more expensive and consuming lookup tables instead of 

FPGA dedicated memory blocks. Fig. 4, partially shows the 

activities during the simulation of “MOV A, SP”: (1) the blue 

line marks the decoding of MOV A, (direct) instruction and 

(2) in the next clock cycle starts the next instruction and the 

content of the SP SFR is read, as shown by the blue arrow. To 

avoid any occurrence of RAW (Read After Write) data hazard 

in the same clock cycle, as only one cycle later register A will 

have available a copy of SP content, register forwarding was 

implemented. The above splitting of ST_STATE in 

combinational and sequential parts with the combinational 

part decoded by a local control unit leverages reduction of 

temperature (and consequently power reduction) and also 

dynamic power due to shorter travelled distance of data in the 

datapath.  

The remaining signals which present less variability and 

shorter control word width are managed by the main control 

unit. This strategy was applied at RTL level to promote (1) 

laziness design and greater flexibility in HDL code 

management and (2) defeating synthesis tools cross-module 

optimization weakness. Thus, manual placement was applied 

since few are the optimizations that synthesis tools can 

forward to the placement and route back-end. Additionally, 

binary encoding was applied to the few states of the control 

unit, defeating power consumption. 

 

B. The Decoder 

Given that some 8051 instructions are split and 

differentiated at register level, e.g., the ISA differentiates by 

opcode the following two instructions “MOV R7, 

#immediate” from “MOV R6, #immediate”, a strategy was 

devised using the Verilog casez construct to group 

instructions based on similar operations, like the two 

presented above. Such register grouping of instructions is 

driven by expression (1) and it enables greater saving of 

power compared to a strategy based on a full opcode width, 

which should be dictated by a lookup-table overhead. Fig. 5 

shows both opcodes 8’b1110_1000 and 8’b1110_1010 

stacked into the same case statement, allowing a more 

compact and intuitive implementation. All instruction 

operands will be easily decoded except for register grouping 

instructions as they represent variability at operands. Based 

on expression 1, variable operands are decoded using those 

instruction bits masked with logical value z, i.e., the bits at 

don’t care indexes (e.g., OPCODE[2:0]) were used to obtain 

the register reference number. 

 

R_i←{R_0,R_1 } 

R_N←{R_0,R_1,R_2,R_3,R_4,R_5,R_6,R_7} (1) 

 

C. Other LP805X Components 

Additionally to the power optimization modules which will 

be described next, other LP805X components (e.g., Memory 

Interface, ROM Subsystem, Internal Data Memory Subsystem 

and ALU) and peripherals (e.g., pseudo random number 

generator, watchdog timer and AES cryptography) were also 

implemented and integrated, but they will not be elaborated 

on due to limited space. 

The memory interface module supports several memory 

types which are statically decided according to application 

specifics when LP805X is synthetized, avoiding extra power 

consumption overhead compared to a dynamic 

configurability. It consists of interfaces to the internal data 

Fig. 2 LP805X’s 2-Stages Pipelined Datapath 

Fig. 3 ST_STATE State Diagram 

Fig. 4 Partial simulation of MOV A, SP 



memory, to the external data memory and to the program 

memory (Fig. 1), with the first two interfaces based on a 

Wishbone bus optimized for low power consumption. A 

speculative handshake was implemented which predicts when 

read and write accesses are successfully concluded in the 

absence of a bus grant mechanism. 

The program memory module was implemented by a 32-bit 

dual-port memory, avoiding multiple clock cycles reading for 

8051-ISA 3-bytes length instructions. It can be customizable 

to use memory implementations offered by several FPGA 

providers as well as RTL codified memory.  Additionally, it 

can also be configured to the application required size by the 

development ecosystem that integrates the RTOS. 

The internal data memory module is split into separate 

components due to different datapaths related to SFR and to 

data memory, and also two special strategies is presented to 

guarantee hazard-free data read. The first one adds extra logic 

to the bus in order to bypass the read value instead of writing 

it back to memory, in case of a write back activity over the 

same address. The second one is based on a RTL codified 

memory with a built-in hazard-free mechanism, enabling 

synthesis tools to use dedicated FPGA memory resources that 

internally support hazard resolution. The choice between the 

two strategies is available through the development 

ecosystem. A local control unit was implemented to tackle 

any indirect addressing mode overhead in terms of power and 

performance by controlling additional register banks to 

accommodate copies of registers R0 and R1. Each SFR is 

individually created using 1-byte wide flip-flops and a 

module was implemented to manage several classes of SFR. 

Targeting the modularity, the SFRs can also be connected to 

the SFR bus using 3-state buffers and even using a 

combination of both. 

Due to the scarce power gating capability at FPGA level, 

the ALU was implemented following a hybrid architecture 

combining tree with chain structures to execute 16 different 

instructions, and LUT combination was applied to synthetize 

16-input multiplexers into one slice. To accommodate the 

other instructions, the carry flag was used to group ADD and 

ADDC, and INC and DEC, each in just one instruction. Also, 

a local control unit for selecting ALU operands was 

implemented fully separated from the ALU itself, avoiding 

the placement of operand decoding far from the data source 

and consequently reducing dynamic power consumption. 

The development ecosystem plays an important role 

connecting and optimizing key parts of the design, such as 

automatic module insertion and parameterization. Fig. 6 

illustrates how a peripheral module (i.e. AES) can request the 

insertion of another module into the design. This is achieved 

by the use of the System:ModRequest option that allows a 

module to request another. Similarly, but more specific to the 

module, the option System:MPOptions was utilized to specify 

the default source seed to the random number generator. By 

making use of Verilog parameters, a seamless integration 

with the development ecosystem backend was attained, 

allowing customization of the RTL according to the 

ecosystem specifications. Fig. 7 shows the integration of the 

parameterization alongside with the RTL source code in 

respect to the option System:MPOptions which dictates the 

default seed for the pseudo random number generator. 

IV. LP805X ARCHITECTURAL-LEVEL POWER 

OPTIMIZATION 

To guide the LP805X power optimization at architectural 

level, the results of the studies presented in [3, 9] were took 

into account and later extended to support system-level power 

optimization driven by the application needs under a RTOS 

(Real-Time Operating System) control. They started by 

identifying the most power consuming blocks, on which 

power optimization efforts should be concentrated using Keil 

Software Dhrystone test code, and then the power 

consumption of the identified blocks (i.e., Control Unit, 

UART, Timer, ALU) were estimated with Synopsys™ Power 

Compiler. 

 

A. The Power Control Unit 

This module basically offers multiple clock frequencies and 

sleep mode services. The former was implemented to divide 

the clock frequency into multiple of two and is driven by a 

binary counter, while the latter was implemented to reduce to 

zero the clock frequency of a given module and its design is 

FPGA’s supplier dependent.  

As a generic comparison between clock resources provided 

by Xilinx and Altera architectures, the Altera clock-tree 

resources are able to combine a greater number of inputs, 

while with Xilinx the same effect will be achieved using 

Fig. 5 Use of casez construct to implement register grouping 

Fig. 6 Module configuration 



several bufgmux blocks (notwithstanding considering other 

internal restrictions). However, to guarantee a safe clock-

frequency transition, bufgmux resources were used to select 

the clock-frequency and drive it to dedicated clock bus. A 

new output was added to the clock frequency module by 

taking advantage of the two bufgmux entries to simulate two 

different clock sources. As shown in Fig. 8, the two entries 

will be the clock source selected by the SFR configuration 

and the clock source currently active. 

Knowing both clock sources and the flag register that 

demand clock source change, SFR CLKSR, the order of the 

bufgmux resource input will be accordingly changed (Fig. 9). 

For Altera FPGA family, the clock-gating strategy presented 

in Fig. 10 was adopted to ensure a glitch-free signal and later 

changed using OR-gate instead of AND-gate as LP805X core 

implementation follows posedge clock (i.e., positive edge 

clock transition). Additionally, this model can automatically 

be converted to a flip-flop clock enable model by enabling 

EDA tools options in corner cases (e.g., the maximum clock 

frequency is degraded above an acceptable value). Note that 

the flip-flop enable strategy was used throughout all LP805X 

core but to switches off the clock tree. For Xilinx FPGA 

architecture, bufgmux resource was used to drive the clock 

line to zero. 

 

B. The Power-Aware Scheduler 

From a holistic system-level design, a priority-based or 

power-aware scheduler can be chosen, but experiments with 

the power-aware scheduler reveal an unaffordable clock 

cycles consumption and so, the power-aware scheduler was 

partitioned between silicon scheduler (see Fig. 11) and 

software scheduler (see Fig. 12). A peripheral module was 

designed and implemented with two special SFRs dedicated 

to the clock-frequency (see Table I) control and it is based on 

a weighting value derived from task’s deadlines and WCETs 

(Worst Case Execution Time), as dictated by a given 

application. Using several and different frequency domains 

throughout the LP805X core dictated special support to 

synchronize them. The strategy based on dual-position FIFOs 

and Dual-port RAM as described in [11] was adopted and 

changed to accommodate LP805X micro-architecture. In 

doing so, the memory interface module was adapted using 

lookup tables to indicate which addresses need such special 

control. The control unit was adapted as well enabling it to 

generate control signals which ensure safe data travelling 

through the asynchronous SFR interface. To provide access 

transparency to these SFR registers, the development 

ecosystem has built-in C++ TMP (Template 

Metaprogramming) artifacts and C macros which can be used 

by the application or system programmer. 

 

V. TESTS AND RESULTS 

From all of the above strategies, manual placement is 

perhaps the one that leaps further away from the laziness and  

Fig. 7 Ecosystem managed parameterization 

Fig. 8 On-the-fly clock source transition 

Fig. 9 Selecting between the old and the new clock sources 

Fig. 10 Altera recommended clock-gating strategy [10] 



TABLE I.  SCHEDULER’S SFR REGISTERS TO BE CONFIGURED WITH THE 

WEIGHING VALUE 

 

generative design strategy. Thus, the end user designer is 

presented with the choice to: either manual place it himself or 

accept the one suggested by the mapper tool. 

Up to and during this phase, the design was subject to 

several tests in relation to its (1) logic response, (2) raw 

performance, (3) power dissipation and (4) Et2. All ISA 

verification testbenches passed successfully and will not be 

herein referred given limited space. Focusing on a specific 

implementation over a Spartan 6, the resource utilization 

depicted on Fig. 13 shows that the power control unit has a 

negligible area overhead disregarding specific clock resource 

utilization (i.e. clock buffers) that is dependent of the needed 

flexibility of the final design. 

 

While acknowledging that Et2 should be the main 

verification metric, this parameter is variable with the set of 

instructions that are executed by a given end user application. 

In this sense, power consumption measurements were taken 

across a spread range of frequencies. As seen in Fig. 14, the 

pack factor has a stronger negative effect over power 

consumption as frequency rises. The post-route simulation 

predicts a power consumption of 230µW (in respect to the 

core as well as some peripherals) at approximately 1MHz 

while targeting a Spartan 6 device. The power aware 

scheduler calculates the minimum possible frequency while 

meeting the deadline at each scheduling point which 

considerably degrades the overall system performance. As the 

system performance is in line with the needed operating clock 

frequency, this led to non-optimal power consumption results 

as the lowest frequencies would not be engaged. A hybrid or 

hardware aided scheduler allowed for a very significant 

reduction of 2440 clock cycles in respect to a purely software 

approach. 

TABLE II.  COMPARISON BETWEEN SOFTWARE AND HYBRID SCHEDULER 

 Worst Case 

Frequency Best Case Frequency 

Software Scheduler 12.2 MHz 6.1 MHz 

Hybrid Scheduler 3.5 MHz 762 KHz 

*not considering the startup condition at which the CPU starts at 

12.2MHz 

The power readings of different schedulers varied 

according to the tasks and their respective timing information 

as well as real world interaction (i.e. I/O operation). Table II 

reports the best and worst case scenarios relative to the CPU 

 7 6 5 4 3 2 1 0 

SCHEDH start enable clock clock clock factor factor factor 

SCHEDL factor factor factor factor factor factor factor factor 

Fig. 11 Silicon power-conscious scheduler 

Fig. 12 Software power-conscious scheduler 

Fig. 12 Resource Utilization 

Fig. 13 Power Consumption in mW per MHz 

Fig. 11 Software power-conscious scheduler 



operating frequency in respect to a test case. As power 

consumption increases almost linearly with operating 

frequency, the hybrid scheduler approach is expected to 

outperform the purely software based approach. 

 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper a low power customizable 8051 

microcontroller designed to be synthesizable manufacturer-

independent while maintaining a set of features managed by 

an integrated graphical environment was presented. The 

component-based approach allows for a lazy design, as the 

IDE is able to optimize most settings according to a set of 

requirements. The proposed 2-stage pipeline combined with a 

RISC-like instruction set allows both significant reduction of 

the CPI and inherent flexibility while adding and maintaining 

new sets of features. A multiple frequency approach allows 

both CPU and peripherals to operate at different clock 

frequencies in a need by need basis. A hybrid power aware 

scheduler comprised of both software and hardware 

superseded a purely software based approach, helping the 

power unit module to cope with the system workload, thus 

further reducing power consumption. The overall results show 

that it is possible to achieve low power implementations 

regardless of the target FPGA device and that it can be finely 

tuned by a development ecosystem capable of optimizing the 

design at the RTL. Proposed as future work is the 

implementation of an asynchronous core to further reduce 

power consumption as well as completely enforcing the 

holistic development ecosystem by completely integrating all 

abstraction layers. 
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