
Hardware-Software Extensions To A Softcore

Processor For FPGA-Based Adaptive PID Control

T. Gomes, P. Garcia, S. Pinto, F. Salgado, J. Cabral, J. Monteiro, A. Tavares

Centro Algoritmi-University of Minho

{tiago.a.gomes, paulo.garcia, sandro.pinto, filipe.salgado, jorge.cabral, joao.monteiro, adriano.tavares}@algoritmi.uminho.pt

Abstract- Embedded Systems were traditionally implemented
as a microprocessor surrounded by on-board peripherals,

specifically assembled for a given application. Several
Commercial Off-The Shelf solutions already provide a variety of
on-chip custom modules, which allow a higher performance,

smaller power consumption solution for a variety of
applications. The advent of Field Programmable Gate Arrays
(FPGA) allowed custom chips to be designed on a per-

application basis, with fine-grain control over
hardware/software partitioning.

This paper presents a case study about the integration of an

adaptive control system on a softcore processor. An MRAC-PID
custom hardware module was developed and implemented on
FPGA, taking advantage of the extensibility capabilities of the

utilized softcore. Results demonstrate how software to hardware
migration can accelerate system performance and maximize
application parallelism.

I. INTRODUCTION AND RELATED WORK

Automatic control systems are widely used in a variety of

industrial applications and several consumer appliances (e.g.,

satellite antennas) [1]. Historically, these control systems

have undergone several technological evolutions, ranging

from pneumatic implementations to analog electronics and,

more recently, digital electronics, typically implemented in

software [2]. Research in the automatic control field

developed techniques far more powerful than the traditional

Proportional Integrative Derivative (PID) controller, such as

adaptive control algorithms [3]. These adaptive controllers,

such as the MIT-based Model Reference Adaptive Control

(MIT-based MRAC) [4], allow automatic control systems to

auto-tune their operation in function of parameter variation in

the controlled system, thus enabling far more precise control

than traditional techniques, requiring less human intervention.

The implementation of embedded controllers in large-scale

systems is typically deployed on microcontrollers, on which

software executes both the adaptive algorithm and the control

law [5]. These microcontrollers are connected to peripherals

which sense and actuate upon the target controlled system. In

this kind of implementation, the maximum actuation

frequency is limited by the time required for the processor to

calculate the adaptive and control algorithms.

Software to hardware migration has been proven to greatly

accelerate computations, thus providing higher performance

than software-only implementations [6]. Although some

years ago this approach was not feasible due to economies of

scale, advances in hardware configurability have enabled

custom hardware designs to be used in a wide range of

applications in a cost-effective fashion [7]. FPGAs now find

their way to a variety of industrial systems and consumer

electronics [8]. FPGAs can be used to design application

specific solutions, incorporating both custom hardware and

software, running on softcore (or in the case of some FPGA

platforms, hardcore) processors, where hardware and software

can be co-designed to provide the best tradeoffs in terms of

power consumption, performance, and other metrics [9].

FPGAs have already replaced Digital Signal Processors

(DSPs) in several applications, as demonstrated by the work

presented in [10]. Similarly, the work presented in [11]

displays the use of a FPGA to accelerate DSP computations.

FPGA implementations of control systems are also becoming

ubiquitous, as demonstrated in [12], [13] and [14].

This paper presents the implementation of a MRAC-PID

controller as a hardware module, integrated on a softcore

processor. This approach, where the processor's Instruction

Set is extended to allow the insertion of custom hardware

modules in a tightly-coupled fashion, allows easy partitioning

of hardware and software as well as efficient software access

to application specific hardware for FPGA platforms. The

remainder of this paper is organized as follows: Section II

gives a brief overview of the softcore processor used for

extension, describes the integrated adaptive control system,

and how the two systems were interconnected in a co-

designed fashion. Section III presents the experimentation to

validate the system execution and displays and discusses the

obtained results. Finally, Section IV concludes this paper.

II. MATERIALS AND METHODS

A: M²µP: An Extensible Processor

M²µP is a 16-bits integer/32-bits floating point processor,

developed for area-constrained low-power embedded

applications [15]. It possesses a 4-stages pipeline, integer and

(half-precision) floating point Arithmetic Logic Unit (ALU),

separate L1 instruction and data caches, an extensible

instruction set and up to 8 hardware-scheduled threads. The

main design goal for M²µP was the scope and characteristics

of its extension capabilities. Namely, its datapath can be

extended with tightly-coupled Custom Computational Units

(CCUs) and its instruction set can be extended with custom

instructions to operate upon the integrated CCUs. The

objectives of allowing such a tightly-coupled integration are:

1) to offer zero-latency access to CCUs to maximize

performance and 2) to allow deterministic software access to

CCU structures to allow their use in hard real-time

applications, without the penalties imposed by the bus in co-

processor implementations. Also, M²µP is a multi-threading

microprocessor: the number of threads can be easily

configured, (one to eight hardware threads can be operate

concurrently) as well as the thread scheduling policy which

can be set to Interleaved or Blocking Multi-Threading (IMT

and BMT, respectively), in function of the application’s

requirements.

B: MRAC-PID Implementation

The MRAC-PID implementation was performed on two

antagonistic approaches: in both, the PID controller was

implemented as a hardware module integrated on M²µP. In

the first approach, the MRAC adaptive control algorithm was

implemented as software running on the softcore processor.

In the second approach, the entire MRAC-PID algorithm was

implemented in hardware. A block diagram of the

implemented hardware system is depicted on Fig. 1.

C: System Integration and Test

The integration of the developed MRAC-PID module with

the M²µP softcore processor was processed by taking

advantage of M²µP's customization and extension

capabilities. M²µP's Instruction Set was extended (several

opcodes are reserved for extension) to incorporate special

instructions to access the MRAC-PID module's internal

control registers; only read/write operations for initial values

are required, since the remaining functionality is completely

implemented through the hardware. The module was then

integrated on the processor's datapath, following a tightly-

coupled approach; instead of hanging the module as a

peripheral accessed through a system bus, which would cause

non-determinism and latencies due to bus arbitration (i.e.,

loosely-coupled integration), the module was integrated

directly as a datapath component; all accesses are processed

internally, thus ensuring zero latency to read/write operations;

writes are performed on the first pipeline stage, and reads

follow the pipeline, also through the forwarding mechanisms.

The M²µP is intended to be used in this fashion, thus resulting

in highly area-effective application specific implementations.

Fig. 1: MRAC-PID Controller Block Diagram

Fig. 2: M²µP and MRAC-PID Controller System Integration

The integration is depicted on Fig. 2 and was prototyped on a

Xilinx Virtex 5 FPGA Development Board.

System validation was performed by implementing the

MRAC-PID system: (1) in Matlab in the Laplace domain; (2)

in Matlab, implementing equivalent discrete (time domain)

system and validating the equivalent implementation; (3)

performing simulation of the software implementation of the

MRAC algorithm, with the PID controller implemented in

hardware and; (4) performing simulation of the complete

hardware implementation using Xilinx's ISE and comparing

the outcomes.

III. RESULTS AND DISCUSSION

Figs. 3, 4 and 5 depict the simulation results on: Matlab

simulation (Fig. 3), Xilinx ISIM simulation using software

implementation of the MRAC algorithm (Fig. 4) and Xilinx

ISIM simulation using hardware implementation of the

MRAC algorithm (Fig. 5).

The adaptation frequency for the Matlab model was chosen

in function of the maximum possible frequency, obtained

from the hardware implementation. As can be observed, the

software implementation of the MRAC algorithm allows a

smaller adaptation frequency, thus yielding poorer results

than the hardware implementation. Additionally, in the

hardware implementation, the softcore processor is

completely free to compute any additional software; in the

software implementation, if the processor should execute any

additional functionality, the adaption frequency would be

further decreased. Results clearly show how hardware

implementations offer higher performance as well as

increased flexibility by allowing explicit parallelism between

functionalities, including between hardware and software.

While with traditional technologies this approach was not

feasible, the widespread use of FPGAs made approaches like

this highly attractive. Although the integration of the MRAC

hardware implementation increases the occupied area, this is

not a design constraint (for the presented case study) since the

softcore processor and the hardware PID controller occupy

just a small portion of the available FPGA fabric. Fig. 6

displays the results obtained from simulation comparing the

Fig. 3: Matlab Simulation Results

Fig. 4: ISIM Software-MRAC Simulation Results

Fig. 5: ISIM Hardware-MRAC Simulation Results

software and hardware implementations of the MRAC

controller.

IV. CONCLUSIONS

This paper presented the integration of a custom hardware

module onto a softcore processor's datapath, performing an

adaptive control algorithm. How hardware migration of

software functionalities can greatly accelerate performance

was demonstrated, as well as how parallelism can be more

easily achieved through hardware/software co-design. The

advantage of using extensible/customizable processors was

demonstrated, especially in the case of applications which use

FPGAs as solutions; in these cases, hybrid (hardware plus

software) designs more often than not are capable of

providing the optimum solution.

Future work will focus on expanding the

extension/customization capabilities, especially regarding

custom hardware integration. At this point, custom hardware

requires addition of custom instructions, so software must be

changed accordingly in order to utilize such modules.

Research will focus on novel methods to seamlessly integrate

hardware (migrated from software) without changes to other

software, thus providing transparency to applications/system

software to utilize functionalities: access will be provided by

a set of Application Programming Interfaces which

encapsulate the underlying implementation. The goal is to

obtain a completely customizable system, where changes to

one sub-system do not require changes to others, in order to

realize application specific solutions with minimum effort,

balancing the design choices to meet several constraints.

V. ACKNOWLEDGMENTS

This work is supported by FEDER through COMPETE and

national funds through FCT Foundation for Science and

Technology in the framework of the project FCOMP-01-

0124-FEDER-022674.

REFERENCES

[1] Bennett, S.; , "Development of the PID controller," Control Systems,
IEEE , vol.13, no.6, pp.58-62, 64-5, Dec 1993

[2] Meenakshi, M.; , "Microprocessor Based Digital PID Controller for
Speed Control of D.C. Motor," Emerging Trends in Engineering and
Technology, 2008. ICETET '08. First International Conference on ,
vol., no., pp.960-965, 16-18 July 2008

[3] Wang Wu; Bai Zheng-min; , "Performance Analysis of an Improved
Single Neuron Adaptive PID Control," Intelligent Information
Technology and Security Informatics (IITSI), 2010 Third International
Symposium on , vol., no., pp.22-25, 2-4 April 2010

[4] Kungwalrut, P.; Thumma, M.; Tipsuwanporn, V.; Numsomran, A.;
Boonsrimuang, P.; , "Design MRAC PID control for fan and plate
process," SICE Annual Conference (SICE), 2011 Proceedings of , vol.,
no., pp.2944-2948, 13-18 Sept. 2011

[5] Ai Xiong; Yongkun Fan; , "Application of a PID Controller using
MRAC Techniques for Control of the DC Electromotor Drive,"
Mechatronics and Automation, 2007. ICMA 2007. International
Conference on , vol., no., pp.2616-2621, 5-8 Aug. 2007

[6] Chaves, R.; Kuzmanov, G.; Sousa, L.; Vassiliadis, S.; , "Cost-Efficient
SHA Hardware Accelerators," Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on , vol.16, no.8, pp.999-1008, Aug. 2008

[7] Sirowy, S.; Yonghui Wu; Lonardi, S.; Vahid, F.; , "Two-Level
Microprocessor-Accelerator Partitioning," Design, Automation & Test
in Europe Conference & Exhibition, 2007. DATE '07 , vol., no., pp.1-6,
16-20 April 2007

[8] Saponara, S.; L'Insalata, N.; Tosti, F.; Fanucci, L.; Terreni, P.; ,
"Analysis of FPGA Solutions for Baseband Processing in Multi Carrier
Communication Standards for Consumer Applications," Consumer
Electronics, 2008. ICCE 2008. Digest of Technical Papers.
International Conference on , vol., no., pp.1-2, 9-13 Jan. 2008

[9] Salgado, F.; Garcia, P.; Gomes, T.; Cabral, J.; Monteiro, J.; Tavares, A.;
Ekpanyapong, M.; , "Exploring metrics tradeoffs in a multithreading
extensible processor," Industrial Electronics (ISIE), 2012 IEEE
International Symposium on , vol., no., pp.1375-1380, 28-31 May 2012

[10] Diggikar, A.B.; Ardhapurkar, S.S.; , "Design and implementation of
adaptive filtering algorithm for Noise Cancellation in speech signal on
FPGA," Computing, Electronics and Electrical Technologies
(ICCEET), 2012 International Conference on , vol., no., pp.766-771,
21-22 March 2012

[11] Jingmeng Liu; Shangfeng Li; Xingming Wu; Baicheng Chen; , "Design
of self-adaptive fuzzy-pid controller based on DSP and FPGA for rapid
thermal processing," Industrial Electronics and Applications (ICIEA),
2011 6th IEEE Conference on , vol., no., pp.1649-1653, 21-23 June
2011

[12] Li Huirong; Zhang Xuefeng; Pang Lijuan; Tong Yanwei; , "Design and
Implementation on the Temperature Control System of Roaster Based
on FPGA and Fuzzy-PID Technology," Intelligent Computation
Technology and Automation (ICICTA), 2011 International Conference
on , vol.1, no., pp.396-399, 28-29 March 2011

[13] Ying-Shieh Kung; Chia-Sheng Chen; Kiing-Ing Wong; Ming-Hung
Tsai; , "Development of a FPGA-based control IC for PMSM drive
with adaptive fuzzy control," Industrial Electronics Society, 2005.
IECON 2005. 31st Annual Conference of IEEE , vol., no., pp. 6 pp., 6-
10 Nov. 2005

[14] del Campo, I.; Martinez, M.V.; Echanobe, J.; Basterretxea, K.; Doctor,
F.; , "A hardware/software embedded agent for real-time control of
ambient-intelligence environments," Fuzzy Systems (FUZZ-IEEE),
2012 IEEE International Conference on , vol., no., pp.1-8, 10-15 June
2012

[15] Salgado, F.; Garcia, P.; Gomes, T.; Cabral, J.; Mendes, J.;
Ekpanyapong, M.; Tavares, A.; , "A customizable processor
architecture for a design space exploration framework," Industrial
Technology (ICIT), 2012 IEEE International Conference on , vol., no.,
pp.129-133, 19-21 March 2012

0

0,5

1

1,5

2

2,5

3

3,5

4

Maximum Adaption
Rate

Dynamic Power
Consumption

Occupied FPGA Area

Software MRAC

Hardware MRAC

Fig. 6: Simulation Results for Software/Hardware MRAC

implementations

