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Abstract—Nowadays, the growing complexity of embedded
systems demands for configurability, variability and reuse. Con-
ditional compilation and object-orientation are two of the most
applied approaches in the management of system variability.
While the former increases the code management complexity,
the latter leverages the needed modularity and adaptability to
simplify the development of reusable and customizable software
at the expense of performance and memory penalty. This paper
shows how C++ TMP (Template Metaprogramming) can be
applied to manage the variability of an object-oriented operating
system and at the same time get ride out of the performance
and memory footprint overhead. In doing so, it will be statically
generated only the desired functionalities, thus ensuring that
code is optimized and adjusted to application requirements and
hardware resources.

Index Terms—C++ Template Metaprogramming, Object-
Oriented Operating System Design, Real-time Operating System,
Variability and Configurability management, Feature Model.

I. INTRODUCTION

Embedded systems are relevant for almost every market
sector and represent a huge part of innovation in today’s tech-
nology. Focus on embedded systems design has been driven
mainly by (i) the high and fast penetration in products and
services promoted by the integration of networks, operating
systems and database capabilities, and (ii) the increasing com-
putational performance for area and power-aware embedded
processors. One indicative of these trends is that in recent
years, approximately 98% of microprocessors annual produc-
tion was aimed at embedded systems [1]. These trends led to
several specific issues and challenges in design new embedded
systems, where bare-metal embedded software development is
no longer affordable due to a tremendous pressure on time-
to-market, increased time and effort development, and poor
end-product quality. So, the focus has been directed to new
embedded systems design methodologies that are able to keep
the pace of software productivity with the speed of hardware
innovation.

Due to the growing complexity and demanding flexibility
of current systems, the integration of operating systems into
the embedded systems software stack makes the system de-
velopment easier, faster and safer. However, it also claims
for an increasing demand for configurability, variability and
reuse strategies [2], to better accommodate new embedded
systems design methodologies. Typically, monolithic operating
system models do not fit the requirements and limitations
of embedded systems since they attempt to maximize the

number of supported platforms and offered features, resulting
in increasing resources consumption. Therefore, the focus
turns to microkernel-based RTOS (Real-Time Operating Sys-
tems) tailored to the processor architecture and application
requirements and constraints. Most of the applied approaches
in small embedded systems domain manage RTOS variability
using conditional compilation or object-orientation. The for-
mer paradigm makes the code management harder [3] while
the latter one provides the modularity and adaptability needed
to simplify the task of developing reusable and customizable
software. However, object-orientation in embedded systems
domain incurs a huge abstraction penalty, if based on weighty
languages dialects like dynamic polymorphism and multiple
inheritance, features that increase overhead in space and
performance [4], [5].

This paper proposes the use of C++ TMP [6], [7] as a
methodology for managing the variability of an object-oriented
RTOS and generate only the desired functionalities, ensuring
that the code is optimized and adjusted to application require-
ments and hardware resources. Section II briefly presents some
similar works. Section III introduces ADEOS, as well as its
feature diagram, in order to identify the common and variable
features on the operating system. Section IV describes ADEOS
domain design and implementation, upgrading and refactoring.
Section V describes the used evaluation process based on
performance and memory footprint. Section VI concludes.

II. RELATED WORK

OS adaptation in embedded systems is not new and
platforms to create Application Specific Operating Systems
(ASOS) include examples such as: Koala, eCOS, PURE
and CiAO. Their adaptation mechanisms encompass (i)
component-based development in Koala [8], (ii) C preproces-
sor directives in eCOS and Linux [9], (iii) object orientation
in PURE and (iv) Aspect Oriented Programming (AOP) [10],
[11] in CiAO, used to configure operating systems oriented
to resource-constrained embedded devices. These approaches
can, in a broad sense, be categorized as software product lines
(SPL) and they have already been applied in other domains,
using different technologies. In [12] efforts have been done to
identify the Linux variability and make it usable as ASOS.

Variability can be managed using several technologies. The
simplest way to achieve it in C/C++ is through conditional
compilation (Linux has its configurability system based on it,
using the so called kconfig model [13]). This method does not



Fig. 1: ADEOS software architecture

induce overhead and has fine-grained granularity, but generates
code difficult to understand, maintain, evolve and reuse [14].
Patches [15] are also heavily used on Linux, having the
additional advantage that base code is not polluted. However,
variants are maintained in an awkward format, worsening
the problems of the previous technique. Taking into account
patch disadvantages, semantic patch was proposed, trying to
perform only localized changes that are later applied into the
code. Coccinelle is one such example, using a notation that
resembles the patch language but it did not perform very well
due to its semantic biasing towards code evolution [16].

III. ADEOS DOMAIN ANALYSIS

To tackle the increasing complexity of current embedded
systems and offering the desired congurability, variability and
reusability, software technologies like generative programming
[6], [17] and model driven development [18] will be combined
with SPL engineering to bridge the abstraction gap between
domain modeling and feature modeling. Before starting with
the domain analysis to identify the commonality and vari-
ability as well as the relationship among RTOS components
and features in the variability model, ADEOS will be shortly
introduced.

A. A Decent Embedded Operating System

ADEOS (A Decent Embedded Operating System) is an
object-oriented operating system developed by Michael Barr
[19]. It was written in C++, and designed to be deployable to
embedded systems with scarce resources. The task manager
is responsible to create, add, remove and run tasks in a
multitasking environment. The scheduler policy implements a
fixed-priority and pre-emptive scheduling. The kernel code is
small (less than 1000 lines) and most of them are architecture
independent; only the context switch code is targeted to
the 80188 processor. Among the few existing object-oriented
operating systems, ADEOS was chosen because the main
target is small embedded systems. ADEOS was refactored and
extended with new features and also to follow a microkernel-
based RTOS model. A porting to MCS-51 (8051 Microcon-
troller Family) family was carried out due its severe resource

constraints microcontrollers. Fig. 1 presents ADEOS software
architecture.

From Fig. 1, one can realize where ADEOS porting effort
to MCS-51 should be focused on. Processor-dependent code
are distributed in header and code file bsp.h and bsp.asm,
respectively. The header file specifies the structure of a task
context (Listing 1) and the low-level function prototypes
(Listing 2). The former represents the microprocessor state
to a specific task, which includes the address of the current
program instruction, the microcontroller registers and flags,
and the address of internal and external stack. The function
prototypes declare the routines responsible to initialize the
context of a specific task, and switch among them.

typedef struct context
{

unsigned char PC H, PC L;
unsigned char A, B;
unsigned char IE;
unsigned char DPL, DPH;
unsigned char R0, R1, R2, R3, R4, R5, R6, R7;
unsigned char PSW;
unsigned char SP;
unsigned char XSP H, XSP L;

} Context;

Listing 1: Machine state

extern ”C”
{

extern void idle(void);
extern void contextInit(Context ∗ pContext,

void (∗run)(Task ∗ pTask),
Task ∗ pTask);

extern void contextSwitch(Context ∗ pOldContext,
Context ∗ pNewContext);

}

Listing 2: Processor-dependent low-level functions signatures

The implementation or definition of processor-dependent
low-level functions are given in the bsp.asm file. Listing
3 presents a snippet of contextInit function, responsible to
initialize the PC H and PC L attributes from task context
structure, which represents the address of task start-up routine.

;Get the pointer to context
MOV DPH, 3; Load pContext H into DPH
MOV DPL, 2; Load pContext L into DPL
;Initialize the pointer to startup routine
MOV A, 5; A = pFunc H
MOVX @DPTR, A; pContext−>PC H = pFunc H
INC DPTR; point to pContext−>PC L
MOV A, 4; A = pFunc L
MOVX @DPTR, A; pContext−>PC L = pFunc L

Listing 3: Initialization of task start-up routine address

B. Feature Model

Feature diagram is a visual representation of feature model
[20] and it represents a set of features organized hierarchically,
starting at the root node that represents the system concept,
and all possible links between all its nodes. The model
allows the management of system commonality and variability,



Fig. 2: ADEOS feature diagram

disregarding the implementation mechanism. Four kinds of
features can be represented:

• Mandatory features: The system must have, mandatorily,
some features. Mandatory features are pointed to by
simple edges ending with a filled circle.

• Optional features: The system may, or not, have some
features. Optional features are pointed to by simple edges
ending with an empty circle.

• Alternative features: The system can have only one
feature at a time. Alternative features are pointed to by
edges connected by an arc.

• Or-features: The system may have a combination of
features. Or-features are pointed to by edges connected
by a filled arc.

Fig. 2 depicts a feature diagram showing variability in
ADEOS and explicit features that can be managed in order to
be able to set scheduling policy, number and type of IPC (Inter-
Process Communication), and even different device drivers,
according to the application requirements.

The root node represents the concept (ADEOS) which is
composed by four features: Task, IPC, Driver and Sched-
uler. Task feature has cardinality [1..*], which means that
ADEOS runs, at least one task (i.e., the idle task). However,
the task feature is alternative, because TCB (Task Control
Block) is characterized by the scheduler. For example, the
task is characterized by priority if uses a high-priority-first
(HPF) scheduler, or by deadline if uses an earliest deadline
first (EDF) scheduler. Scheduler has cardinality [1], namely,
ADEOS has by default only one scheduler and like task, is
also alternative, which means that only one policy can be
included in a specific configuration. On the other hand, IPC
and Driver features has cardinality [0..*], which represents that
they are optional features. For example, the Driver feature is

only necessary to include if it is required to address some
peripheral. Likewise, the IPC feature is only included if tasks
need synchronization and communication. In this sense, these
two features are or-features, but they also represent alternative
variability. For example, it can be necessary to address an SPI
(Serial Peripheral Interface Bus) and USART (Universal Syn-
chronous/Asynchronous Receiver/Transmitter) device at the
same time. However, the peripheral specification can be only
one. For instance, in MCS-51 different manufacturers (Atmel,
Texas, and so on) have specific peripherals implementations.
So, different versions of a specific driver can exist to target
different peripherals implementation. But only one can be used
in a given configuration.

IV. ADEOS DOMAIN DESIGN AND IMPLEMENTATION

Taking into account that most of small embedded applica-
tions variability can be managed at compile time, generative
programming can be applied for automatic selection and
assembly of components based on a configuration knowledge
that will be implemented using C++ TMP as the generator.
Therefore, allowing system configurations and simultaneously
preventing undesired and unnecessary overhead induced by the
previously mentioned approaches.

In spite of the modular architecture leveraged by encapsu-
lating each operating system component into a class, ADEOS
follows a monolithic model that later will be changed to a
microkernel model by extending and adapting the original
IPC mechanisms. This paper will focus on refactoring original
ADEOS classes into customizable and configurable artifact
templates encoded in C++ TMP to support the original mono-
lithic model. Only the artifact templates related to scheduler
and task classes will be discussed as the others will be
similarly refactored. Listing 4 presents the scheduler template



declaration with the template parameter specified later as the
selected scheduler given by a desired configuration.

//Scheduler template declaration
template <typename schedType> class schedManager;

Listing 4: Scheduler class template declaration

Listings 5 and 6 show the artifact templates representing
the scheduler component. During the template instantiation
process, the compiler selects the template that best matches
the given template argument (i.e., class name that implements
the selected scheduler policy). It was necessary to specialize
as many templates as the number of schedulers, since different
scheduler implementations can have different methods desig-
nations, arguments and behaviours.

//Specialization for HPF scheduler
template <>
class schedManager<sched HPF> {

private:
sched HPF sched ;

public:
void start() {

sched .start HPF();
}
void schedule() {

sched .schedule HPF();
}
void addTask(Task ∗ pTask) {

sched .addTask HPF((pTask);
}
void enterIsr() {

sched .enterIsr HPF(();
}
void exitIsr() {

sched .exitIsr HPF(();
}
...

};

Listing 5: HPF scheduler specific template definition

//Specialization for EDF scheduler
template <>
class schedManager<sched EDF> {

private:
sched EDF sched ;

public:
void start() {

sched .start EDF();
}
void schedule() {

sched .schedule EDF();
}
void addTask(Task ∗ pTask) {

sched .addTask EDF(pTask);
}
void enterIsr() {

sched .enterIsr EDF();
}
void exitIsr() {

sched .exitIsr EDF();
}
...

};

Listing 6: EDF scheduler specific template definition

Each scheduler is implemented as a module in an individual
header file, and it is necessary to specialize as many dedicate

templates as needed scheduler polices. Since the class tem-
plate methods are implemented in class definition, they are
implicitly declared as inline, speeding-up performance as no
calls are done during execution.

For clarity, in Listing 7 typedef is used to add a template
designation and also to specify the chosen template that should
be instantiated. Finally, Listing 8 shows the customization
transparency offered by such parametric polymorphism, as
no change needs to be done on ADEOS original main func-
tion. Simply replacing the template parameter sched HPF to
sched EDF on Listing 7, it is possible to run the same code
in Listing 8 with a different scheduler policy.

typedef scheduleManager<sched HPF> sched;

Listing 7: Scheduler template specification

sched os; //Declare scheduler template variable
...
int main() {

os.addTask(&Idle); //Add idle Task to readyList
os.addTask(&taskA); //Add Task to readyList
os.addTask(&taskB); //Add Task to readyList
os.start(); //Start OS
return 0;

}

Listing 8: Example using scheduler template

The task manager class is refactored following the same
approach with only slight differences. Note that the task
component depends on the chosen scheduler policy and will
present variability at task specificity as well as at list level
(several lists will be used, one to represent the ready tasks and
several others representing blocked tasks). Listing 9 presents
an enumeration specifying the task lists type, and the task
manager template declaration. Thus, the template arguments
should specify the list and task type.

//List Type
enum TypeList { readyList, waitList };
//Task manager template declaration
template <TypeList list, typename taskType> class taskManager;

Listing 9: Task manager class template declaration

Listings 10 and 11 present the artifact templates for task
manager class. The first parameter specifies the list type, while
the second one is the class name that implements the task type.
Similarly to scheduler, each task class is implemented as a
module in an individual header file. This way, it is necessary
to specialize as many dedicated templates as the list and task
types.

template <>
class taskManager <readyList, TaskList HPF> {

private:
TaskList HPF readyList ;

public:
void insert(task HPF ∗ pTask) {

readyList .insertHPF(pTask);
}
task HPF ∗ remove(task HPF ∗ pTask) {

return readyList .removeHPF(pTask);
}
...



};

template <>
class taskManager <waitList, TaskList HPF> {

private:
TaskList HPF waitList ;

public:
void insert(task HPF ∗ pTask) {

waitList .insertHPF(pTask);
}
task HPF ∗ remove(task HPF ∗ pTask) {

return waitList .removeHPF(pTask);
}
...

};

Listing 10: HPF task manager specific template definition

template <>
class taskManager <readyList, TaskList EDF> {

private:
TaskList EDF readyList ;

public:
void insert(task EDF ∗ pTask) {

readyList .insert2(pTask);
}
task EDF ∗ remove(task EDF ∗ pTask) {

return readyList .remove2(pTask);
}
...

};

template <>
class taskManager <waitList, TaskList EDF> {

private:
TaskList EDF waitList ;

public:
void insert(task EDF ∗ pTask) {

waitList .insert2(pTask);
}
task EDF ∗ remove(task EDF ∗ pTask) {

return waitList .remove2(pTask);
}
...

};

Listing 11: EDF task manager specific template definition

To initialize the task list of a given application is defined
a generic template (Listing 12) and a specialized one (Listing
13) to implement the rolling cycle, and the stop condition,
respectively. The generic class template only accepts one
template parameter, that is a static list of tasks (Typelist [21]).
The variable tail is a recursive template that uses the tail of the
current list as a template parameter. The recursion is stopped
with the explicit specialization for the NullType.

//Task template declaration
template<typename TList> class CTask;

//Typelist template definition
template<typename T, typename U>
class CTask< Typelist<T,U> > {

private:
T first ;
CTask<U> tail ;
Task p ∗ par;

public:
void init(Task p ∗ par ) {

first .init(par );
tail .init(par −>next);

}
};

Listing 12: Typelist task template definition

//NullType template definition
template<>
class CTask<NullType> {

public:
void init(Task p ∗ par ) { }

};

Listing 13: NullType class template definition

Finally, Listing 14 shows a declaration (typedef ) that allows
the creation of a Typelist with 2 types (tasks), the template
instantiation and tasks initialization. The init method is called
once, since the recursion is intrinsic to the template. In this
Listing, Task is the designation of the class tasks and Results
is the designation of the tasks’ static list (Typelist).

//Typelist instantiation
typedef MakeTypelist<Task,Task>::Result list;
CTask<list> tasks;
...
//Initialize Tasks
tasks.init(parameters);

Listing 14: Tasks initialization example using Typelists

V. EVALUATION

To simplify the system evaluation only a limited number
of possible configurations were tested to reflect variability at
only two levels, instead of following each new feature added
to a given configuration. Thus, only 32 different congurations
were tested and measurement data gathered to compare the
variability management using C++ TMP and dynamic poly-
morphism. For the former approach a predefined configuration
that implements an RTOS with a preemptive priority-based
scheduler, with mutex and two device drivers (USART and
SPI) targeting Atmel 8051 family (AT89C51) was chosen. The
system runs two tasks: (i) sending a character using serial port;
and (ii) communicates with an SPI slave device. The character
is sent every two seconds, and the SPI communication is
established every five seconds. Data related to performance
(i.e., execution time), memory footprint and code management
(lines of code and number of classes) were collected.

A. Performance and Memory Footprint

The performance and memory footprint results reflects,
respectively, the execution time in clock cycles and code
memory in bytes required to run system tasks with different
implementations based on C++ DP (Dynamic Polymorphism)
and C++ TMP. To get the execution time the IAR Embedded
Workbench 8051 debugger was used. This evaluation does not
take into account the effective time spent to send the character
through the serial port and to communicate with SPI slave
device. To measure the code size the Atmel Flip software was
used. Table I presents the achieved results.

The results show that C++ TMP implementation has lower
execution time and memory footprint than C++ DP. The



TABLE I: Performance and Memory Footprint Results

Implementation Execution Time
(clock cycles)

Code Memory
(bytes)

C++ DP 34728 12987
C++ TMP 27851 7958
Comparison -20% -40%

TABLE II: Code Management Results

Implementation Lines of Code
(LOC)

Number of Classes
(NOC)

C++ DP 1232 29
C++ TMP 1325 41
Comparison +8% +41%

achieved improvements are 20% and 40% in performance
and memory footprint, respectively. The pointed reason is
that TMP code is optimized to a specic conguration and is
free from unused instructions and indirect calls. Furthermore,
some more experiments were carried out with tree levels in
variability and the results show that C++ TMP implementation
can reduce execution time and memory footprint around 25%
and 55%, respectively.

B. Code Management

The code management results show the number of lines of
code (LOC), excluding comments and blank lines, and the
number of classes (NOC) required to implement all RTOS
features. To get code management metrics the Understand
software by Scientic Toolworks was used. Table II presents
the achieved results. From Table II one can conclude that LOC
is identically in both implementations. However, relatively to
NOC, C++ TMP implementation has a higher value. This
means that TMP code offers higher modularity and encapsu-
lation than code implemented using dynamic polymorphism,
which is better to manage, maintain and reuse.

VI. CONCLUSION AND FUTURE WORK

This paper described how template metaprogramming can
be exploited to statically configure and customize, an object-
oriented operating system. Since this approach uses an object-
oriented programming language, it simplifies code manage-
ment task. Furthermore, since this advanced programming
technique does not use none of those weighty C++ dialects
and only compile a specific configuration, the code is opti-
mized and overhead free. The results showed that C++ TMP
approach presents some advantages related to performance
and memory footprint when compared to traditional object-
oriented approach.

Under development are several tasks such as: (i) upgrading
ADEOS with more features, to increase system variability and
following a microkernel model; (ii) promoting the passage
from development for reuse to the development with reuse
by combining MDD (Model-Driven Development) approach
with feature models and domain artifact template models.
Mainstream tools like Eclipse and Xpand are used. At the
end, a plain C implementation of ADEOS will be proposed,
using conditional compilation to manage variability. This way,

it will be possible to evaluate TMP implementation against a C
implementation, and discuss exhaustively the achieved results
in terms of performance and memory footprint.
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