
Porting SLOTH System to FreeRTOS running on
ARM Cortex-M3

S. Pinto, J. Pereira, D. Oliveira, F. Alves, E. Qaralleh, M. Ekpanyapong, J. Cabral and A. Tavares
Centro Algoritmi - University of Minho

{sandro.pinto, jorge.pereira, daniel.oliveira, f.alves, jorge.cabral, adriano.tavares}@algoritmi.uminho.pt
qaralleh@psut.edu.jo, mongkol@ait.ac.th

Abstract—Traditionally, operating system (OSes) suffers from
a bifid priority space dictated by the co-existence of threads man-
aged by kernel scheduler and asynchronous interrupt handlers
scheduled by hardware. On real-time systems, where reliability
and determinism plays a critical role, this approach presents
a noteworthy lack, as any interrupt handler can interrupt an
execution thread, regardless of its priority.

This paper presents the implementation of an unified priority
space approach (SLOTH), handling each thread as an interrupt.
A light-weight version of FreeRTOS was internally redesigned,
to replace the software scheduler by a hardware one, which
exploits a Commercial Off-The-Shelf (COTS) hardware interrupt
controller, provided by ARM Cortex-M3. The results showed
that our implementation solves the priority inversion problem,
and simultaneously improves the system performance, reduces
the memory footprint and simplifies maintainability.

Index Terms—Unified Priority Space, Threads as Interrupts,
FreeRTOS, Real-time Systems, ARM Cortex-M3, NVIC.

I. INTRODUCTION

One of the most important core task of an operating system
kernel is to manage the execution control flow of a computing
system [1]. This encompasses handling of synchronous ex-
ecution threads and asynchronous interrupt service routines
(ISRs), simultaneously. Threads are managed by software,
which means that they are scheduled and dispatched by the
OS software scheduler. ISRs, in contrast, are managed by hard-
ware, i.e. they are scheduled and dispatched by mechanisms
provided with the hardware interrupt controller, usually trig-
gered by hardware events associated with peripheral devices.

This division into thread priorities and interrupt priorities
forms a dual priority space, with ISRs having a higher privi-
lege of execution. This issue induces a well-identified problem
on scientific community, designed as rate-monotonic priority
inversion [2], [3]. On embedded real-time systems, where time
and determinism plays a critical role, this means that the
execution of real-time threads can be delayed by interrupts
that have semantically lower priority. On applications fitting
safety-critical systems, this problem can cause catastrophic
consequences to the human life.

To overcome the aforementioned problem, a light-weight
version of the FreeRTOS targeting the ARM Cortex-M3 archi-
tecture was refactored to support the SLOTH [4] concept. The
thread-related application programming interface (API) were
redesigned based on the programmable interrupt subsystem
services, while still keep them syntactically intact to avoid the
porting effort for legacy applications. A suspending feature is

also presented to overcome the run-to-completion drawback
of implementing threads as pure interrupts. The strategy has a
significant impact on the entire system, presenting advantages
on performance, memory footprint and code management.

II. RELATED WORK

The problem of a bifid priority space is not new as the
first proposal dates from 1995 [5]. Since there, other solutions
were proposed, and guided by different concepts. Kleyman and
Eykholt [5] presented an effective way to unify the execution
flow of an operating system by handling interrupts as threads.
However, although they justify the mapping of interrupts into
threads using a low overhead technique, their approach leads
interrupts to the same level of performance overhead and
indeterminism as software threads. The same methodology
was followed by Lohamn et al. [6] as a configurable property
of the CiAO embedded operating system.

Luis Leyva-del-Foyo et al. [7] address the priority inversion
problem by integrating interrupts and tasks handling on a low
level interrupt handling component of an operating system,
and, therefore, eliminating the overhead of a dual priority
space. Their approach is portable to several hardware plat-
forms, adaptable for various operating system implementations
and well suitable for real-time systems.

SLOTH [4] and SLEEPY SLOTH [8] are the only projects
targeting commodity hardware (e.g., Infineon TriCore hard-
ware interrupt subsystem) by first treating threads as pure
interrupt handlers [4] on a redesigned OSEK-OS specication.
However, SLOTH presented a significant limitation as it
dictates a control flow based on run-to-completion semantics,
which later was solved by abolishing the distinction between
threads and ISRs [8]. Thus, threads could be dispatched as
efficiently as interrupts, and interrupts could be scheduled as
flexibly as threads.

A fruitful unification of the priority space requires hard-
ware support that is not strictly provided by commodity
processors. However, some existent commercial processors,
like ARM Cortex-M Series and Infineon TriCore, integrate
programmable hardware interrupt controllers which properly
exploited will tackle such an issue.

III. DESIGN

This section briefly presents an overview of SLOOTH and
SLEPPY SLOTH approaches, explaining how we plan to use

Fig. 1: ISR Vector Table

them as the backbone of our implementation.

A. Threads as Interrupts

The central design idea of this work is having threads
run as interrupt handlers, unifying a priority space in order
to solve the priority inversion problem. An overview of our
design is presented in Figure 1. As it can be seen, tasks and
ISRs are represented by abstract interrupt sources, that will be
configured with appropriate priorities. For tasks, the interrupt
source request is triggered synchronously by software (CPU),
while for ISRs it is triggered asynchronously by hardware
(peripherals). This way, the scheduling is done completely
in hardware, and so, the interrupt controller subsystem is
responsible to always dispatch the interrupt source (task/ISR)
with the highest priority. Therefore, if ISR2 is running and the
interrupt source associated to Task1 is triggered, the interrupt
controller stops the execution of ISR2 and starts running
Task1.

In the example depicted in Figure 2 an unified execution
flow of a system composed by two tasks (Task1 and Task4)
and one ISR (ISR3) is presented. Task1, Task4 and ISR3
are associated to interrupt sources with priorities 1, 4 and 3,
respectively. Analysing the picture, Task1 is activated at t1,
and runs until an asynchronous hardware event happens at
t3. At this time, since this event is linked to an ISR that has
higher priority than Task1, the latter is interrupted and ISR3 is
dispatched. During the execution of ISR3, another high priority
task (Task4) is activated at t5. On a system with a bifid priority
space, the typical behaviour leads ISR3 to execute until the
end, and only after return-from-interrupt instruction (IRET)
Task4 would be dispatched. However, by unifying the priority
space since Task4 has higher priority than ISR3, the task will
be dispatched at t5, and only when it terminates at t6 ISR3 will
be recovered. Task1 is re-scheduled again after the end of ISR3
at t7. At t9 the task with the highest priority is activated again,
which means that Task1 is interrupted and Task4 dispatched.
During the execution of Task4 an asynchronous event triggers,
once again, ISR3. But, since Task4 has the highest priority, it
is not interrupted, and only when it finishes (t12) ISR3 will
be dispatched.

So, the analysis of the previous example clearly shows
that the unified priority space approach solves completely the

Fig. 2: Unified Priority Space: Example of an Execution Flow

priority inversion problem of a system with a dual priority
space. However, treating threads as pure interrupts has an
inherent limitation: they can not be suspended, which means
that it only supports run-to-completion control flow. To tackle
suck drawback, the next subsection describes how to add a
suspending feature, which extends in some way the usual
preemptive mechanism.

B. Suspending Feature

The previous subsection ended identifying the main
SLOTH’s drawback, that was later fixed with SLEEPY
SLOTH [8]: tasks which are implemented as interrupts can
not be suspended. This subsection will briefly present how
to tackle the above problem, by basically modeling a task as
consisting of three parts: prologue, body and epilogue [9].

1) Prologue: The prologue is executed wherever a high
priority task is scheduled by the interrupt controller. It extends
the standard behaviour of the hardware interrupt controller
(i.e., saves automatically some registers of the CPU context) by
saving the remaining context of the current task, and restoring
the context of the new task. The only exception wherein
the prologue is not executed is when the scheduling point is
between two pure interrupts.

2) Epilogue: The epilogue is executed wherever a task is
suspended or finished. If the task was suspended, it saves the
task’s context and then restores the state of the new dispatched.
Otherwise the task was finished and it only restores the context
of the new task. The only exception wherein the epilogue is
not executed is when the scheduling point is between two pure
interrupts.

Figure 3 shows the execution flow of a more complex
application. The application is composed by three ISRs (ISR0,
ISR1 and ISR5) and two tasks (Task2 and Task4). ISR0, ISR1
and ISR5 have priority 0, 1 and 5 respectively. Task2 has
priority 2 and Task4 has priority 4. At t1, an asynchronous
event trigger ISR1, preempting ISR0. Since they are both
pure interrupts the interrupt controller will perform the context
switch automatically. Subsequently, ISR1 activates Task2 (t2)
which is prefixed by its prologue. When Task2 is created its
own stack is initialized with the right registers values that
should be load when the task is dispatched. This loading
is done during the Task2 prologue. During the execution
of Task2 another high priority task (Task4) is activated and
then dispatched by the interrupt controller (t4). Its associated

Fig. 3: Suspend Feature: Example of an Execution Flow

prologue will save the state of the preempted Task2 and restore
the context of Task4. At t6 Task4 is interrupted by a higher
priority interrupt (ISR5) and at t9 it will resume the execution.
Therefore its state, when interrupted, must be saved (ISR5
prologue) and after must be restored (ISR4 epilogue). Task4
will suspend itself, and at that time its state must be saved
in its own stack (i.e., a field of the task’s TCB). When the
suspension takes place, besides saving the task state is also
restored the state of the next task. Task2 then resumes Task4,
activating its prologue once again (t12). This task finishes at
t14 and at that point a epilogue is performed to restore the
state of next task to be dispatched (Task2). ISR1 will be re-
scheduled again when Task2 performs a suspension at t16.
This suspension triggers an epilogue that will save the context
of Task2. Then, ISR1 resumes again Task2, that will execute
its prologue to restore its context. When Task2 finishes (t19),
ISR1 is re-schedule normally as well as ISR0 at t20.

C. Synchronization

Synchronization mechanisms are used to protect critical
sections, which means that they avoid multiple tasks or threads
from access shared resources simultaneously. Mutual exclu-
sion (mutex objects) is one of the most used approaches to
implement it. Commodity hardware usually provides a special
CPU register that defines the minimum priority for interrupt
processing. Basically when this register is set to a given
priority value, it prevents the activation of all interrupts with
the same or lower priority level. So, ensure the exclusivity of
a resource means raising the current minimum CPU priority to
the highest priority level of all tasks that share the resource. By
contrast, release it means re-setting the register to the original
value.

D. Requirements on the Hardware Interrupt System

The implementation of the unified priority space model is
only feasible if the hardware interrupt controller fulfills some
specific requirements: (i) the hardware interrupt controller
must be programmable and provide different configurable
priority levels, which allows changing the priority level of
an interrupt source; (ii) the interrupt subsystem shall support
manual triggering of interrupts as well as by software, allowing

threads activation synchronously; (iii) the number of interrupt
sources should be enough to cover all the threads and interrupt
handlers desired for the system, or some kind of multiplex-
ing/sharing of interrupt sources should be supported by the
runtime system.

IV. IMPLEMENTATION

A. Operating System and Architecture Overview

1) FreeRTOS: FreeRTOS [10], [11] is a real-time operat-
ing system (RTOS) designed to be deployed on embedded
systems with scarce resources. It is characterized by a very
simple and small kernel core, written mostly in C, presenting
a software architecture divided into two main layers: the
”hardware independent” and the ”portable” layer. The former
is responsible for performing processor independent functions
and is maintained intact for all architectures, while the second
implements some architecture-specific routines (e.g. context-
switching).

Among the extensive list of existing RTOSs, FreeRTOS was
chosen because: (i) is open-source, which allows an internal
redesign, crucial to this work’s purpose; (ii) the kernel core
is simple and small, which allows to perform the necessary
changes without a huge engineering effort; (iii) is widely used
and a low-end embedded market leading RTOS, due to the
large number of supported architectures (ported to thirty-four
different platforms until June 2013 [10]).

2) ARM Cortex-M3: The ARM Cortex-M3 processor was
the first of the Cortex generation release by ARM in 2004
targeting a wide range of applications in the embedded systems
domain. The interrupt subsystem present in the Cortex-M3
platform - NVIC (Nested Vectored Interrupt Controller) -
fulfils the requirements described in Section III-D. By default
this interrupt controller provides 16 sources of exception and
1-240 sources of external interrupts (IRQ).

B. Threads as Interrupts

Running threads as interrupts handlers is very straightfor-
ward on the Cortex-M3 platform. As sketched is section III,
this involves the refactoring of the system vector table. This
table is presented in the startup code for the target platform.
Looking closely to the vector table layout, only entries above

the 17th entry point (i.e., those dedicated to external inter-
rupt sources) are available for the model implementation, as
the first 16 entry points are dedicated to system exceptions
handlers. However, even among those available entry points
some of the last ones should be freed for special devices
management.

Listing 1 presents the patches applied over the vector table.
As it can be seen, each task will be linked to an interrupt
source, based on its priority. The assignment is done during
the task creation.

Vectors:
/∗ System Exceptions ∗/
DCD initial sp ; Top of Stack
DCD Reset Handler ; Reset Handler
DCD NMI Handler ; NMI Handler
... /∗ External Interrupts ∗/
DCD FLASH IRQHandler ; Flash
...
DCD Task0 IRQHandler ; Task w/ prio. 0
DCD Task1 IRQHandler ; Task w/ prio. 1
...

Listing 1: Vector Table Refactoring

Setting up a task IRQ channel during its creation en-
compasses the initialization of a structure that contains the
configuration information of it (task priority, IRQ channel
number and status). The variable TaskIRQ_s will be filled
with the task attributes, and used to initialize the NVIC
(Listing 2). At last, the interrupt source pending bit (linked
to task) is set. If the configured task has higher priority than
the one currently owning the executing path, the scheduler will
dispatch it. However, the scheduler must be previously set by
enabling all interrupts through the PRIMASK register.

void xPortAssignTask(unsigned portBASE TYPE uxPriority)
{

/∗ Task IRQ structure declaration ∗/
NVIC InitTypeDef TaskIRQ s;
/∗ Priority assignment ∗/
TaskIRQ s.NVIC IRQChannelPreemptionPriority = uxPriority;
/∗ Task assignment to the respective IRQ ∗/
TaskIRQ s.NVIC IRQChannel = LAST IRQ + uxPriority;
/∗ Task IRQ status ∗/
TaskIRQ s.NVIC IRQChannelCmd = ENABLE;
/∗ NVIC initialization according to NVIC InitStruct ∗/
NVIC Init(&TaskIRQ s);
/∗ Sets the Task IRQ pending bit to 1 ∗/
NVIC SetIRQChannelPendingBit(LAST IRQ + uxPriority);

}

Listing 2: Task Assignment to an IRQ Channel

C. Suspending Feature

Supporting the named suspending feature in SLOTH-based
environment is very challenging. The approach as described in
the above design section led to the creation of a prologue and
epilogue code segment, executed wherever a task is dispatched
by the hardware. With these two segments it is possible to
suspend tasks, preserving properly their extended contexts and
restoring them later when related tasks are resumed.

When a task is dispatched by the interrupt controller the
handler associated with that interrupt source is executed.

Each handler defined in the start-up file (Listing 3) is re-
sponsible for identify the IRQ channel associated with the
triggered task (through R2 register) and only then call the
xPortSwitchContext routine to execute the respective
task prologue and epilogue.

Task0 IRQHandler:
PROC
IMPORT xPortSwitchContext
MOV R2,#0
B xPortSwitchContext

Listing 3: IRQ Handler Refactoring

The prologue code segment (Listing 4) is executed when
a higher priority task is scheduled, starting by saving the
context of the previous task in its own stack, pointed by
pxTopOfStack in the TCB structure. Then, this pointer
should be updated with the new top of the stack location.
Furthermore, the system stack is recycled by removing the
contents of certain registers automatically saved by the inter-
rupt controller. That set of registers will be saved in the task’s
stack to prevent the possibility of implosion of the main stack
in the presence of multiple chained tasks. Then the context of
the dispatched task is restored, ending with a jump to the task
function body.

Prologue:
...
LDR R0, =pxCurrentTask
LDR R1, [R0]
...
MOV R3, #4
MUL R0, R1,R3
/∗ R1 = pxTopOfStack ∗/
LDR R3, =pxCurrentTCB
LDR R3, [R3,R0]
LDR R1, [R3]
/∗ Saves the extended task context ∗/
STMIA R1!, {R4−R10}
...

Listing 4: Partial Prologue Code Segment

In turn, the epilogue code segment (Listing 5), is executed
when a task is suspended or finished, starting by checking
if the current task was suspended or terminated. In the for-
mer case, it is implicit that a vTaskSuspend() API call
happened. In this case the tasks TCB is updated by placing
the ’S’ character on the task status. Then, the context is
saved in its own TCB stack field, which occurs immediately
after getting the address to its top. The next step will be
executed regardless if the task was suspended or finished. This
encompasses restoring the context of a low priority task, which
involves the replacement of registers values as well as the main
or execution stack.

Epilogue:
...
LDR R0, =pxCurrentTask
LDR R3, [R0]
MOV R1, #4
MUL R2, R3,R1
/∗R11 = pxTopOfStack∗/
LDR R3, =pxCurrentTCB
LDR R3, [R3,R2]

LDR R11, [R3]
/∗Restores extended task ∗/
LDMIA R11!, {R4−R10} /∗R4−R10∗/
...

Listing 5: Partial Epilogue Code Segment

Finally, to resume a suspended task it is necessary to
identify its priority, which is crucial to select the correct IRQ
channel. After this identification, it will be verified if the
task is indeed in the suspended state, and if so the resume
is performed. This encompasses only setting the pending bit
of the corresponding task channel.

D. Synchronization

The acquisition of a mutual exclusion object for protection
of shared resources will be performed taking into account
which task is currently running and desires to acquire it.
Based on the priority of the task that wants to acquire the
mutex, it will be verified which other tasks share the same
resource. The resource shared between tasks must be statically
identified during each task creation. As previously discussed in
section III-C, to guarantee the exclusive use of that resource
the current minimum CPU priority should be raised to the
highest level among all tasks that share it. The BASEPRI
register presented in the NVIC is used to perform this priority
ceiling protocol, where interrupt handlers with a lower or
equal priority to the task that acquires the mutex will not be
dispatched.

E. Limitations

Four main limitations can be identified on this implemen-
tation. The first one is related to the limited number of
tasks: the refactoring of the vector table is restricted to the
available number of interrupt sources provided by the interrupt
controller. However, since this is a hardware limitation, it
can be overcome choosing a microcontroller version which
features a greater number of interrupt sources, or supporting
interrupt sources multiplexing/sharing mechanism through the
runtime system. Second, the suspending flexibility offered to
the tasks can only be performed over the task that is currently
executing. This means that is not possible to suspend another
task inside the body of the task that has presently the control of
the CPU. Third, the priority level of each task must be atomic
and so, tasks (which are assigned to a dedicated interrupt
source based on their priority) should not have the same
priority. Finally, the implemented synchronization mechanism
is not compatible with FreeRTOS original API, and thus it
will be overcame in a near future.

V. EVALUATION

Since our approach aims at making use of hardware features
to implement some OS task management functionalities, this
leads to a positive impact in system performance, memory
footprint and maintainability. To corroborate this predictions,
we tested two different versions of the FreeRTOS on a
ET-STM32F103 evaluation board with an ARM Cortex-M3
running at 72MHz. Basically, a native light-weight (with a

minimal core kernel APIs support) version of FreeRTOS were
compared against the redesigned implementation. To assess
the aforementioned metrics some software tools, like Keil
µVision4 toolkit [12] and Understand [13], were used.

A. Performance

In order to assess the performance gain achieved by our
implementation, we have performed several microbenchmarks
on both OS versions. The selected scenarios encompass the
modified thread-related system calls, which include:

1) Create a task with high priority to trigger its dispatching:
execution time from the point before xTaskCreate()
to the first instruction of the created/activated task;

2) Create a task with low priority which does not trigger
its dispatching: execution time of xTaskCreate()
system service;

3) Suspend the running task, which leads necessarily to
the dispatching of another task: execution time from the
point before vTaskSuspend() to the point after the
task was dispatched;

4) Resume a task of higher priority, which triggers its
dispatching: execution time from the point before
vTaskResume() to the first instruction of the resumed
task;

5) Resume a task of lower priority, which does not trigger
its dispatching: execution time of vTaskResume()
system service;

6) Acquire a resource: execution time of
xSemaphoreTake() system service;

7) Release a resource with the dispatch of another
task: execution time from the point before
xSemaphoreGive() to the first instruction of
the dispacthed task;

8) Release a resource without the dispatch of another
task: execution time of xSemaphoreGive() system
service;

The performance results are depicted in Table I. On the first
and second microbenchmark, the time spent on memory allo-
cation was not taken into account for both implementations. As
it can be seen, compared to the standard light-weight version
of FreeRTOS, our implementation presents better results in all
scenarios. Concretely, it reduces the execution time between
3.62% (6 - Acquire a resource) and 82.76% (5 - Resume
a task of lower priority), which corresponds to a speedup
between 1.04 and 5.80, respectively.

B. Memory Footprint and Code Managment

The memory footprint results reflects the code memory in
bytes of both compiled kernel images (ROM size of compiled
hex file). To measure the size of each kernel image, the
MDK ARM toolchain (Keil uVision4) was used without any
optimization. Table II presents the achieved results. It shows
that the modified FreeRTOS has lower memory footprint than
the original one. On the other hand, the boot memory is higher
than the original, because this section suffered some significant
changes at the software architecture-level to improve the

TABLE I: Performance Results

Execution Time (clock cycles)
1) 2) 3) 4) 5) 6) 7) 8)

FreeRTOS (standard) 610 730 326 374 232 166 702 188
FreeRTOS (modified) 496 420 142 164 40 160 426 40

Comparison -18.69% -42.47% -56.45% -56.15% -82.76% -3.62% -39.32% -78.73%

TABLE II: Memory Footprint and Code Managment Results

Code Memory (bytes) Lines of Code (LOC)
kernel boot Total kernel boot Total

FreeRTOS (standard) 3124 372 3496 1162 121 1283
FreeRTOS (modified) 952 460 1412 602 319 921

Comparison -69.52% +23.56% -59.61% -48.19% +163.63% -28.20%

unified priority space approach on the FreeRTOS. However,
since the required boot memory code is considerable smaller
than the kernel one, the total code memory was decreased
59.61%.

The code management results show the number of lines of
code (LOC), excluding comments and blank lines, required
to implement both minimalists versions of FreeRTOS. To
assess code management metrics, the Understand software by
Scientic Toolworks was used. As it can be seen in Table II,
the number of LOC for the kernel was decreased 48.19%.
On the other hand, on the boot code the number of LOC
was increased 163.63%. However, once again, since the boot
code is considerable smaller than the kernel one, the total
number of LOC was decreased 28.29%. This means that with
our implementation the maintainability effort was also slightly
reduced.

VI. CONCLUSION AND FUTURE WORK

This paper described how standard modern interrupt con-
trollers can be used to implement a single system execu-
tion flow, unifying threads and interrupts. Instead of a pure
software-based scheduler our approach uses the hardware in-
terrupt subsystem to implement a unified priority space, avoid-
ing the rate-monotonic priority inversion problem and ensuring
a high level of reliability and determinism. To implement the
followed approach (SLOTH), we have internally redesign a
light-weight version of FreeRTOS targeting the ARM Cortex-
M3 architecture. The evaluation results showed convincing
improvements at multiple levels: on execution performance;
on memory footprint; and in code management. For example,
with respect to system performance our implementation out-
performs the standard implementation, reducing the execution
time by a factor of 4% to 83%.

In summary, the presented solution suppresses the existent
distinction between threads and ISRs on FreeRTOS: threads
can now be treated as interrupts, and interrupts can be
suspended like threads. Developers can forget the artificial
differences of each execution flow, and choose priorities ho-
mogeneously based only on the requirements and constraints
of the applications.

Proposed as future work is the implementation on a full
version of FreeRTOS, giving complete support for the remain
APIs. Inclusively, the mutual exclusion feature will be also

redesigned to be fully compatible with legacy applications.
Additionally, considering that multiprocessing is becoming an
emergent trend on todays embedded market, future research
will be also focused on investigating ways to port this approach
to multi-core platforms. Pandaboard [14] and ZedBoard [15]
will be used as a reference boards since they both feature a
dual-core ARM Cortex-A9 with a similar interrupt controller.

VII. ACKNOWLEDGEMENTS

This work is supported by FEDER through COMPETE
and national funds through FCT Foundation for Science and
Technology in the framework of the project FCOMP-01-0124-
FEDER-022674.

REFERENCES

[1] A. Silberschatz, P. Galvin, and G. Gagne, Operating System Concepts,
8th ed. John Wiley and Sons, 2009.

[2] L. Leyva-del Foyo, P. Mejia-Alvarez, and D. Niz, “Predictable interrupt
management for real time kernels over conventional PC hardware,”
Proceedings of the 12th IEEE Real-Time and Embedded Technology
and Applications Symposium, pp. 14–23, 2006.

[3] F. Scheler, W. Hofer, B. Oechslein, R. Pfister, W. Schröder-Preikschat,
and D. Lohmann, “Parallel, hardware-supported interrupt handling in an
event-triggered real-time operating system,” International conference on
Compilers, architecture, and synthesis for embedded systems - CASES,
pp. 167–174, 2009.

[4] W. Hofer, D. Lohmann, F. Scheler, and W. Schröder-Preikschat, “Sloth:
Threads as interrupts,” 30th IEEE Real-Time Systems Symposium - RTSS,
pp. 204–213, 2009.

[5] S. Kleiman and J. Eykholt, “Interrupts as threads,” ACM SIGOPS
Operating Systems Review, pp. 21–26, 1995.

[6] D. Lohmann and J. Streicher, “Interrupt synchronization in the CiAO
operating system,” Proceedings of the 6th workshop on Aspects, com-
ponents, and patterns for infrastructure software, 2007.

[7] L. Leyva-del Foyo, P. Mejia-Alvarez, and D. de Niz, “Predictable
Interrupt Scheduling with Low Overhead for Real-Time Kernels,” 12th
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications - RTCSA, pp. 385–394, 2006.

[8] W. Hofer, D. Lohmann, and W. Schröder-Preikschat, “Sleepy Sloth:
Threads as Interrupts as Threads,” 32nd IEEE Real-Time Systems Sym-
posium - RTSS, pp. 67–77, 2011.

[9] R. Müller, “Implementation of an Interrupt-Driven OSEK Operating
System Kernel on an ARM Cortex-M3 Microcontroller,” 2011.

[10] “FreeRTOS homepage.” [Online]. Available: http://www.freertos.org/
[11] R. Barry, Using the FreeRTOS Real Time Kernel, 1st ed., 2010.
[12] “uVision4 User’s Guide.” [Online]. Available: http://www.keil.com/

support/man/docs/uv4/
[13] “Understand Source Code Analysis and Metrics.” [Online]. Available:

http://www.scitools.com/
[14] “PandaBoard homepage.” [Online]. Available: http://wwww.pandaboard.

org/
[15] “ZedBoard homepage.” [Online]. Available: http://www.zedboard.org/

