
DIHyper: providing lifetime Hypervisor Data
Integrity

José Lopes, José Martins, Adriano Tavares and Sandro Pinto
Centro Algoritmi

University of Minho, Portugal

{jose.lopes, jose.martins, atavares, sandro.pinto}@dei.uminho.pt

Abstract—Virtualization is being widely adopted in modern
embedded systems, due to its security advantages in isolating
multiple and heterogeneous operating systems. Security by iso-
lation is a well established strategy for achieving security goals
such as data confidentiality, integrity, and availability; however
the successful attacks against virtualization infrastructures have
raised seriously questions regarding the trustworthiness of exist-
ing hypervisors. In this paper we present DIHyper, a lightweight
approach which endows a TrustZone-assisted hypervisor with
a self-protecting capability to provide lifetime data integrity.
The implemented runtime mechanism is able to protect the
system against non-control-data attacks. The experimental results
demonstrate DIHyper can be effectively enabled with approxi-
mately 4% performance overhead.

Index Terms—DFI, Data flow, integrity, security, TrustZone.

I. INTRODUCTION

Virtualization has been used as a key enabling technology
for coping with the ever growing complexity and mixed-
criticality of modern embedded systems, due to the possibility
of consolidation and isolation of multiple operating systems
on the same hardware platform. Several embedded industries,
ranging from consumer electronics to aerospace, and automo-
tive to industrial control systems, share an upward trend for
integration, due to the common interest in building systems
with reduced size, weight, power and cost (SWaP-C) budget
[1,2].

Security requirements and functionalities are currently be-
ing implemented using the isolation primitives provided by
hypervisors, based on the premise of increased reliability from
a reduced Trusted Computing Base (TCB); however, for high-
assurance systems, this has been proven to be insufficient [3,4].
If hypervisors are vulnerable, security functionalities might be
disabled by attacks originated from the guest OSes. Recent
research efforts towards virtualization technology and security
point out one common problem: the need for reconciling
security with virtualization, the need for real trustworthy
hypervisors [4]–[7].

As security researchers have been focusing on protecting
against code-injection and code-reuse attacks, attackers moved
their attention to a more subtle class of attacks: non-control-
data attacks [8]. These attacks are perpetrated while still
following the legitimate control-flow of a program. Program’s
data can be divided into two classes: control data and non-
control data. A multitude of attacks with growing complexity,

such as JOP [9], has been developed targeting control-data
and, consequently, the control-flow. As control-flow integrity
countermeasures starts becoming widespread, modern OSes
and hypervisors remain vulnerable against non-control-data
attacks. Non-control-data attacks are not recent; however, they
maintain an ever-increasing relevance [10,11].

There are two paradigms driving research on secure soft-
ware and systems. The first approach consists in eliminating
software bugs (e.g., buffer overflow, dangling pointers) at
compile-time. Here, formal verification gains relevance, being
the only known way to ensure that a system is free of program-
ming errors. For example, seL4 [12] provides formal-proof
of functional correctness for a microkernel OS. However, for
this purpose, several restrictions are imposed on micro-kernel
design and implementation. A second avenue of work consid-
ers the former methods either insufficient or inadequate and
proposes the implementation of runtime defense mechanisms
[13]–[18]. HyperSEntry [13] is a runtime integrity monitor that
only captures persistent changes to the hypervisor. Other mem-
ory introspection-based solutions such as VMWatcher [14] and
Lares [15] suffer from this same problem of only capturing
persistent changes programs’ data. Despite being designed to
protect a guest OS, they follow the same technique. Other
methods, aiming at total or partial memory protection (e.g.,
Cyclone [16], BaggyBounds [17] and DFI [18]), are also
interesting approaches, although sometimes prohibitive due to
severe non-deterministic behavior or performance overhead.

Ensuring hypervisor’s lifetime integrity poses a real chal-
lenge. Boot-time integrity can be enforced using a secure boot
mechanism (e.g., TPM, ARM TrustZone); however, runtime
integrity poses another set of problems and challenges. The
hypervisor is expected to be vulnerable, which demands the
agent to analyze system’s dynamics, ideally, without interfer-
ing with the hypervisor itself or imposing stringent design or
implementation constraints.

In this paper we present the design, implementation and
evaluation of DIHyper, a runtime monitor which reliably es-
tablishes the continuous data integrity of a TrustZone-assisted
hypervisor. Our experience indicates DIHyper’s code size is
small and its integration in commodity hypervisors is straight-
forward, as it does not require specific hardware support.
Evaluation with application benchmarks show that the integrity
protection can be effectively enabled with approximately 4%

performance overhead.

II. BACKGROUND

This section overviews essential background about the
ARM TrustZone technology (Section II-A) and the TrustZone-
assisted hypervisor adopted in this work (Section II-B).

A. ARM TrustZone
TrustZone is a hardware security-oriented technology imple-

mented in ARM application processors (Cortex-A), covering
the processor, memory, peripherals, interrupts and bus. At
the heart of TrustZone is the concept of secure and non-
secure worlds. These two worlds are completely hardware
isolated, with non-secure software blocked from directly ac-
cessing secure world resources. The current world in which
the processor runs is determined by the Non-Secure (NS) bit.
A switch between the two worlds can be bridged via software
referred to as the secure monitor, which runs in high-privileged
processor mode, the monitor mode. To enter the monitor
mode, a new privileged instruction, SMC (Secure Monitor
Call), was introduced. TrustZone allows system designers to
add a TrustZone Address Space Controller (TZASC). This
component extends isolation to the memory infrastructure, al-
lowing partition of dynamic random-access memory (DRAM)
into different secure and non-secure memory regions. The
TrustZone-aware Memory Management Unit (MMU) provides
a distinct MMU interface per world, enabling each world to
have a local set of virtual-to-physical memory address trans-
lation tables. The isolation is also present at the cache-level.
Devices can be configured as secure or non-secure through
the TrustZone Protection Controller (TZPC). The Generic
Interrupt Controller (GIC) also supports the coexistence of
secure and non-secure interrupt sources.

B. µRTZVisor
µRTZVisor [5] stands for microkernel real-time TrustZone-

assisted hypervisor, and is an extended version of RTZVisor
[19] following a microkernel-like architecture and an object-
oriented approach. µRTZVisor targets security from the outset,
by applying a secure development process. Contrarily to
existing microkernel-based solutions, µRTZVisor is able to
run nearly unmodified guest OSes, while, contrarily to existing
TrustZone-assisted solutions, µRTZVisor is able to provide a
high degree of functionality and configurability. µRTZVisor
places also strong emphasis on the real-time support. The
hypervisor was enhanced with a scheduling policy based on
time domains. These time domains can have different priorities
and are scheduled according to a preemptive, round-robin
schema. Experiments were conducted using both synthetic and
application benchmarks; on both cases results were similar,
with a slight increase in degradation under realistic workloads
(application benchmarks). To the best of our knowledge,
RTZVisor and µRTZVisor have proven to be the unique
TrustZone-assisted hypervisors allowing the coexistence of
multiple and completely isolated OSes on the same hardware
platform without ARM’s Virtualization Extensions (VE) sup-
port.

III. DIHYPER: DESIGN

DIHyper is designed to provide a secure and self-protected
runtime data integrity monitor for µRTZVisor using commod-
ity hardware available in current ARM processors. In this
section, the design goals, threat model and assumptions are
discussed. Then, the proposed system approach is overviewed.

A. Design Goals
Designing a hypervisor with tight security requirements for

safety-critical and/or real-time applications can be a demand-
ing task. Performance and resource utilization are important
metrics for embedded software. Furthermore, due to real-
time constraints, determinism is often paramount in embedded
systems, creating an extra challenge when designing any secu-
rity countermeasure oriented towards these systems. DIHyper
seeks the following goals.

Detection of non-control-data attacks This class of attacks
is the focus of this work. DIHyper must detect attacks com-
promising µRTZVisor’s integrity, which can compromise its
availability. Control-data attacks can also be considered when
modifications to code pointers occur.

Self-protection DIHyper executes at the same privilege
level as µRTZVisor, with the highest privilege in the soft-
ware stack. This requires a self-protection mechanism against
attacks aiming at DIHyper itself.

Deterministic behavior The proposed security counter-
measure must not lead to non-deterministic behavior while
µRTZVisor is executing normally.

Maintainability DIHyper must easily adapt itself to newer
versions of µRTZVisor. Its deployment process must be auto-
mated to create a complete and sound data integrity protection.

B. Threat Model and Assumptions
The adversary model consists of attackers able to exploit

memory corruption vulnerabilities capable of reading and
writing arbitrary locations in memory. To successfully launch
an attack, attackers can inject and execute their own code
or misuse existing one. More importantly, this threat model
considers non-control-data attacks; thus, an attacker can com-
mence an attack without ever modifying program’s control-
flow. This model assumes that a Control-Flow Integrity (CFI)
implementation is being used and control-flow attacks are out
of the scope of this work.

The hardware is considered trustworthy. A secure boot
mechanism and MMU hardware must be in place. Secure
boot is essential to guarantee the integrity of the µRTZVisor
hypervisor and DIHyper, at boot-time. The hypervisor code
is assumed to be vulnerable, due to its implementation in
C++. In this model, it is assumed that the attacker, failing to
compromise the hypervisor, will attempt to attack the deployed
security mechanism. Hardware-related attacks are out of the
scope of this threat model.

C. Proposed Approach
Figure 1 depicts the proposed runtime defense mechanism

against non-control-data attacks. Executing at the same privi-
lege level as the hypervisor, a Remote Monitor is introduced

Applications

OS

Applications

OS

Applications

OS

Instr A

Instr B

Instr C

Store A

Instrumentation

Instr D

Instr E

Rule 1

Rule 2

Rule 3

Rule 4

Information Collector

Hypervisor Log Data Structure Remote Agent
Secure
World

Non-Secure
World

First core Second core

Ring Bu�er

 0 1 2 3 4 5

 6

 7

 8

 9 Write
 pointer

Read Pointer

Figure 1. Concurrent execution of an integrity monitor and µRTZVisor.
Data is collected through instrumentation and analyzed in the Remote Monitor,
enforcing a developer-defined specification.

to intermittently verify data integrity rules, provided at design
time. The specification aims to ensure lifetime correctness for
all sensitive static data structures which, in turn, safeguard
µRTZVisor’s runtime data.

The Remote Monitor is isolated from µRTZVisor, leverag-
ing the MMU to write-protect sensitive data and enforce a
W⊕E policy, where pages are configured either as writable or
executable. Further, the introduction of a CFI scheme ensures
that the target program follows a statically-defined Control
Flow Graph (CFG). The Remote Monitor’s Information Col-
lector retrieves execution traces, generated by the instrumented
µRTZVisor, containing information about write operations to
sensitive static variables used to enforce the data integrity
rules. This execution traces consist of both values written
to critical variables as well as addresses used for indirect
write operations. This scheme follows a lazy approach, as
information is only collected when a write to a critical static
variable occurs, in order to minimize performance overhead.

The Ring Buffer works as an intermediary, transferring
information from the hypervisor to the Remote Monitor.
Through compile-time instrumentation, extra instructions are
injected into the hypervisor, logging sensitive information to
the Ring Buffer.

IV. DIHYPER: IMPLEMENTATION

Figure 2 presents the modifications to the compilation chain
of µRTZVisor. First and foremost, µRTZVisor is instrumented,
at compile-time, by an extended version of GCC. Then, the
code for the Remote Monitor is automatically generated, using
a developer-provided data integrity specification. At last, the
Remote Monitor is inserted into µRTZVisor, through binary
patching.

Delving into the specifics, two extensions or plug-ins were
added to the GCC compiler: the Type Analyzer and the Instru-
mentation Pass. The former analyzes every developer-defined
data type (e.g, struct/class definitions). Essentially, it creates
a textual representation of the program’s memory layout. The

layout, containing developer-defined data types and offsets is
then stored in a file (Memory Layout). This information is
subsequently used to translate a data integrity specification to
C++, creating the Remote Monitor. The Instrumentation Pass
analyzes the code currently under compilation, in its interme-
diate GIMPLE IL representation, injecting instrumentation as
required. Instrumentation assumes the form of inline assembly.
Likewise, the Instrumentation Pass logs its operations to a
file (Instrumentation Metadata), used by the Rule Mapper to
generate the Remote Monitor. The Instrumentation Pass and
Type Analyzer are independent entities.

The Rule Mapper maps a data integrity specification to
C++, using the previously generated files as well as the
developer-provided specification itself. Data integrity rules
must be mapped to C++ since they are abstractly defined by
the developer. Lastly, the Remote Monitor code is compiled
and a binary blob is inserted into the µRTZVisor’s executable.
This is the final step in the compilation chain.

A. DI Specification

Data integrity rules can be created as a result of the
instrumentation process. The devised rule types emerged from
the developer’s security requirements to secure the current
version of the µRTZVisor hypervisor. Currently, there are
four types of rules that can be defined; however, this can be
extended as required.

• Immutable array element - Allows to define an element
of an array as read-only. This array can be defined inside
classes or it can be the static object itself.

• Immutable Element - This rule is a generalization of
the previous. In this case, classes’ member variables (i.e.,
fields) can be defined as read-only.

• Integer Range - Defines a range for the value of an
integer variable.

• Bit Values - Enforces individual bit values on memory
mapped registers.

Data integrity rules are field-sensitive, meaning they can
be applied to classes’ member variables or structures’ fields.
The rules provide finer granularity over commonly available
hardware (i.e., MMU), when enforcing memory access poli-
cies (e.g., defining read-only memory areas). Write-protecting
an internal part of a continuous memory block is a difficult
task without close to word-level granularity to define access
policies, except by changing program’s memory layout which
can introduce new errors or incompatibilities with legacy code.
Being field-sensitive, this method is more granular than other
software-based approaches such as WIT [20].

The state of memory mapped registers must be taken
into consideration as µRTZVisor interacts directly with the
hardware. The Bit Values rule type allows to specify individual
bit values when updates to such registers occur.

Rule definition is ongoing work, aiming to create a concrete
Domain Specific Language (DSL). In Figure 2, these rules
are defined in the Abstract Specification text file, which is

µRTZVisor

Type
Analyzer

Instrumentation
Pass

GCC µRTZVisor
1 0 0
0 1 0

µRTZVisor
1 0 0
0 1 0 Monitor

Memory
Layout TXT

TXT
Instrumentation

MetadataTXT
Plugin
Input

TXT
Abstract

Specification
Developer

Integrity
Rules

Rule
Mapper

Figure 2. Modifications to µRTZVisor’s compilation chain to insert the Remote Monitor. Inserting two plug-ins in GCC to instrument the code under
compilation. Introduction of a Rule Mapper Java program to translate an abstract data integrity specification to C++, generating the Remote Monitor.

then used by the Instrumentation Pass to determine where the
logging procedure instrumentation must be inserted.

B. Hypervisor Instrumentation

Instrumentation is unavoidable to record the execution
traces of µRTZVisor into the Log Data Structure, depicted
in Figure 1. With two options available, instrumentation at
compile-time was chosen instead of binary patching. Compile-
time instrumentation consists of extending the compiler with
extra functionalities to generate supplementary code. With full
access to µRTZVisor’s source code, the semantic information
provided by the compiler and its intermediary representations
can be leveraged to automate this process of inserting new
instructions. The Instrumentation Pass is a compiler pass.

The logging procedure instrumentation is inserted as inline
assembly thus, being platform specific. The algorithm begins
by loading the value of the Write Pointer, a pointer containing
the index of the next location to be written in the ring buffer
data structure. The logged data is stored after performing the
arithmetic to calculate the address of the new log entry. In the
end, the Write Pointer is incremented to point to the next log
entry. The log has a statically defined size for each entry. While
there is only one log, it can be divided into two virtual logs:
the Value Log and the Address Log. The former stores a copy
of the data written into a sensitive data structure. The latter
collects data used in indirect write operations such as addresses
or/and copies of integer variables used to index arrays. Listing
1 denotes an indirect write, extracted from µRTZVisor, to
a sensitive static object. To log this operation, the runtime
value of guest_num, represented in the optimized GIMPLE
IL representation in Listing 2 as guest_num.0_19, will
be copied to the Value Log. Similarly, the variables used to
resolve the indirection (this_6 and prehitmp_81) are
logged as well. Instrumentation is inserted after line 3 in
Listing 2.

When instrumentation is inserted, an unique identifier is
associated with that code block and logged as the code
executes, allowing to identify the origin of new log entries in
the Remote Monitor. Logged data can be categorized as: the
written value, the address of the object, variables used to index
an array and the identifier. A new log entry always contains the

1 void GuestManager::GuestCreate(GuestConfig const
&config){

2 static int32_t guest_num = 0;
3
4 Guest &rguest = guestList[guest_num];
5 rguest.id = guest_num;
6 ...
7 return;
8 }
9

Listing 1. C++ code extracted from µRTZVisor.

1 ...
2 guest_num.0_19 = guest_num;
3 MEM[(struct Guest

&)this_6(D)].guestList[prephitmp_81].id =
guest_num.0_19;

4 ...
5

Listing 2. Snippet of GIMPLE code equivalent to lines 4 and 5 of Listing 1.

identifier; however, the other fields are optional. For example,
as constants are written to sensitive data structures the written
value is not copied. Similarly, if there are no indirections in
the write operation, only the written value gets copied to the
log. Information about the inserted instrumentation is stored
in the Instrumentation Metadata text file, depicted in Figure
2, to be subsequently used by the Rule Mapper. By logging
both values and sources of indirection - in write operations
-, it is possible to perform either sanity or bound checking,
respectively.

C. Remote Monitor

The Remote Monitor is a standalone bare-metal application,
distinct from the hypervisor and executing in a separate core
from µRTZVisor, allowing to concurrently perform security
verifications. With the data generated from the compilation
of µRTZVisor, the Rule Mapper can generate the verification
code to enforce the developer-defined data integrity rules, at
runtime. Firstly, the Rule Mapper generates code to resolve
ambiguities on the accessed memory location while perform-
ing bound checking. For this purpose, it uses both the identifier
and the values stored in the Address Log. Furthermore, for this
approach to be field-sensitive, bound checking is performed
in any indirect write to any class member variable of a

sensitive static object. Then, rules are translated to their C++
representation and enforced when write operations to specific
memory locations occur.

The Remote Monitor and the µRTZVisor executables must
be linked into a single binary image, as depicted in Figure
2. A new section is included in the µRTZVisor object file,
using the GNU obj-copy utility. At runtime, the MMU is
used to write-protect both the log, except when instrumen-
tation is being executed, and the Remote Monitor code from
modifications originated in µRTZVisor. Regarding TrustZone,
only the Secure MMU interface is configured to protect these
memory regions, since an attacker must violate the VMM
software to access this sensitive memory regions and the
VMM is protected by DIHyper (complemented with a CFI
implementation). This extra layer of protection tries to mitigate
attacks to the µRTZVisor hypervisor targeting the security
mechanism.

V. EVALUATION

DIHyper was evaluated on a Zybo platform targeting a dual
ARM Cortex-A9, running at 650 MHz. The evaluation focused
on security (Section V-A) and performance (Section V-B). To
evaluate security, we conduct a security analysis. To evaluate
the performance overhead, we used the MiBench Benchmark
Suite.

A. Security Analysis

In this section, we evaluate the security of our solution by
summarizing and explaining how two security invariants must
be enforced:

• Tamper proof - Attackers should not manipulate either
the data or code of the Remote Monitor. This includes the
logs - shared between the target program (µRTZVisor)
and the Remote Monitor - and the instrumentation.

• Non-bypassable - Attackers cannot bypass the logging
instrumentation.

µRTZVisor, using TrustZone technology, provides the first
line of defense against attacks originated in VMs, either aiming
at the VMM or the Remote Monitor. So, an attacker must
exploit a memory corruption vulnerability while the processor
is in Monitor mode - VMM privilege level - to be able to break
the security invariants. If such an exploit occurs, the devised
security mechanism has memory protections in place that
ensure the first invariant. Namely, the MMU enforces access
control policies on memory. Tampering with the Remote
Monitor is only possible by disabling the MMU or modifying
the translation tables. Disabling the MMU requires special
instructions that are inserted with the instrumentation and are
not available as a function. Furthermore, an attacker cannot
disable the MMU without re-enabling it as the instrumentation
inserted in critical writes is an atomic basic block (i.e., does
not possess any branch instructions). Log data structures are
read-only, also enforced by MMU. Log write protections are
disabled by the inserted instrumentation and re-enabled shortly
after the log update. While attackers can target the page table,
their efforts would be fruitless, as the physical addresses of the

page table are not mapped in the page table itself. Changing
the base address for the page table also requires specific assem-
bly instructions. By adding all instrumentation after the write
operation and due to the aforementioned atomicity, invariant
2) is enforced. An attacker cannot perform a write and avoid
instrumentation as branch instructions are not present.

Complementing DIHyper with a CFI implementation allows
to thwart attacks either to data- or control-planes of the VMM.
The proposed approach aims at mitigating non-control-data
attacks. Considering code pointers as critical variables that
must be protected, it also provides control-flow protection to
a certain extent. However, the stack is completely disregarded
as it is not considered a source of expressive non-control-
data attacks. CFI arises as a complement to further secure the
control-plane of µRTZVisor.

Novel non-control-data attacks, such as DOP [10], are
mitigated in their expressiveness as an attacker is not able
to arbitrarily modify a sensitive static variable. However, due
to the granularity of the proposed approach these attacks are
still possible. For example, the stack can be corrupted to
perform operations on spurious data without diverging from
the legal control-flow. Although that would go undetected,
once an indirect access tried to access critical variables without
permission, it would most likely be stopped by the MMU. Fur-
thermore, attacks aiming at data assigned to critical variables
are eliminated as that data is further analyzed by the Remote
Monitor. Additionally, the CFI implementation allows to detect
further control-flow related attacks.

A special characteristic of this log-based protection scheme
is the detection of transient attacks. In this type of attacks, the
adversary may cause harm and then hide its traces. With this
scheme, this kind of attacks are not possible, as every write
to critical variables and variation in the control-flow are regis-
tered for further analysis. Periodic integrity verification tools
can only detect permanent integrity damage. For example,
methods using introspection techniques, such as HyperSEntry,
are invoked periodically to analyze the memory of a monitored
entity.

B. Performance

To evaluate the performance overhead introduced by DI-
Hyper, an application benchmark was executed to measure
runtime overhead, using the MiBench Embedded Benchmark
Suite. µRTZVisor was assigned to the primary core, while
DIHyper was configured to run on the secondary core. The
evaluation focused on the MiBench’s automotive suite. Figure
3 depicts the results of running the benchmarks on a non-
instrumented version of µRTZVisor (normalized and high-
lighted in a darker blue) and on the proposed solution with DI-
Hyper (light blue). According to Figure 3, DIHyper introduces
a performance overhead of approximately 4%. This remains
the same throughout the entire test suite as all applications
only use µRTZvisor’s scheduling capabilities.

A set of tests was also conducted to measure the cost of
IPC-related hypercalls with and without DIHyper. The focus
on this specific set of hypercalls is due to their relevance on

0.00
0.20
0.40
0.60
0.80
1.00
1.20

 large small large small large small large small

basicmath bitcounts qsort susan smoothing

Normal execu�on DIHyper

Figure 3. MiBench Automotive Benchmark results, comparing the virtualized
execution of a FreeRTOS guest against one with DIHyper.

Table I
IPC-RELATED HYPERCALLS EXECUTION TIME (µS).

Port Operations Non-Instrumented Instrumented

SendMsg 4.36 4.37
RecvMsg 4.17 4.18

Notify 2.36 2.38
SendReceive 5.49 5.51
SendReply 3.70 3.70
ConfigPort 3.65 3.66

the µRTZVisor’s microkernel implementation. All hypercalls,
except those that perform copy of data should have a constant
cost; however, due to our focus on the latter we assume a
message size of 64 bytes. The used data integrity specification
does not consider data transferred between guest OSes as cru-
cial for µRTZVisor’s integrity. Runtime overhead is reduced
when performing such data intensive operations, which are the
most common.

VI. CONCLUSION

Virtualization has been largely adopted in the embedded
systems domain to ensure robust isolation and fault contain-
ment among systems with different criticalities. However, the
successful number of attacks against virtualization infrastruc-
tures have raised seriously concerns regarding the trustworthi-
ness of existing hypervisors. In this paper we presented the
development of DIHyper, a runtime monitor which reliably
establishes the continuous data integrity of a TrustZone-
assisted hypervisor (i.e., µRTZVisor). We have described a
self-protecting solution capable of detecting the most recent
non-control-data attacks and which can coexist with other
control-flow integrity mechanisms. DIHyper contributes with
increased security for µRTZVisor.

Work in the near future will mainly focus in the imple-
mentation of response mechanisms which aim at restoring
system’s integrity, whenever a security violation is detected
through DIHyper. Going forward, our security mechanism will
be extended to cover dynamic data as well, providing total
protection over the data-plane.

VII. ACKNOWLEDGMENTS

This work has been supported by COMPETE: POCI-01-
0145-FEDER-007043 and FCT - Fundação para a Ciência e
Tecnologia within the Project Scope: UID/CEC/00319/2013.

REFERENCES

[1] G. Heiser, “Virtualizing embedded systems: why bother?” in Proceed-
ings of the 48th Design Automation Conference. ACM, June 2011, pp.
901–905.

[2] D. Reinhardt and G. Morgan, “An embedded hypervisor for safety-
relevant automotive e/e-systems,” in 9th IEEE International Symposium
on Industrial Embedded Systems. IEEE, June 2014, pp. 189–198.

[3] S. Pinto, T. Gomes, J. Pereira, J. Cabral, and A. Tavares, “IIoTEED:
An Enhanced, Trusted Execution Environment for Industrial IoT Edge
Devices,” IEEE Internet Computing, vol. 21, no. 1, pp. 40–47, Jan 2017.

[4] J. Szefer, E. Keller, R. B. Lee, and J. Rexford, “Eliminating the
hypervisor attack surface for a more secure cloud,” in Proceedings of
the 18th ACM conference on Computer and communications security.
ACM, 2011, pp. 401–412.

[5] J. Martins, J. Alves, J. Cabral, A. Tavares, and S. Pinto, “µRTZVisor:
A Secure and Safe Real-Time Hypervisor,” Electronics, vol. 6, no. 4,
2017.

[6] F. Zhang, J. Chen, H. Chen, and B. Zang, “CloudVisor: retrofitting
protection of virtual machines in multi-tenant cloud with nested vir-
tualization,” in Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles. ACM, 2011, pp. 203–216.

[7] G. Cicero, A. Biondi, G. Buttazzo, and A. Patel, “Reconciling Security
with Virtualization: A Dual-Hypervisor Design for ARM TrustZone,” in
Proceedings of the 18th IEEE International Conference on Industrial
Technology, 2018.

[8] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-Control-
Data Attacks Are Realistic Threats,” in Proceedings of the 14th USENIX
Security Symposium, vol. 14, August 2005.

[9] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented
programming: a new class of code-reuse attack,” in Proceedings of the
6th ACM Symposium on Information, Computer and Communications
Security. ACM, 2011, pp. 30–40.

[10] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-Oriented Programming: On the Expressiveness of Non-control
Data Attacks,” in 2016 IEEE Symposium on Security and Privacy (SP),
May 2016, pp. 969–986.

[11] I. Díez-Franco and I. Santos, “Data is flowing in the wind: A review
of data-flow integrity methods to overcome non-control-data attacks,”
in International Conference on EUropean Transnational Education.
Springer, 2016, pp. 536–544.

[12] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish et al., “seL4:
Formal verification of an OS kernel,” in Proceedings of the 22nd
Symposium on Operating Systems Principles, 2009, pp. 207–220.

[13] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. C. Skalsky,
“Hypersentry: enabling stealthy in-context measurement of hypervisor
integrity,” in Proceedings of the 17th ACM conference on Computer and
communications security. ACM, 2010, pp. 38–49.

[14] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection through
vmm-based out-of-the-box semantic view reconstruction,” in Proceed-
ings of the 14th ACM conference on Computer and communications
security. ACM, 2007, pp. 128–138.

[15] B. D. Payne, M. Carbone, M. Sharif, and W. Lee, “Lares: An archi-
tecture for secure active monitoring using virtualization,” in 2008 IEEE
Symposium on Security and Privacy (sp 2008), May 2008, pp. 233–247.

[16] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and
Y. Wang, “Cyclone: A safe dialect of c.” in USENIX Annual Technical
Conference, General Track, 2002, pp. 275–288.

[17] P. Akritidis, M. Costa, M. Castro, and S. Hand, “Baggy bounds checking:
An efficient and backwards-compatible defense against out-of-bounds
errors.” in USENIX Security Symposium, 2009, pp. 51–66.

[18] M. Castro, M. Costa, and T. Harris, “Securing software by enforcing
data-flow integrity,” in Proceedings of the 7th Symposium on Operating
Systems Design and Implementation, 2006, pp. 147–160.

[19] S. Pinto, J. Pereira, T. Gomes, M. Ekpanyapong, and A. Tavares,
“Towards a TrustZone-Assisted Hypervisor for Real-Time Embedded
Systems,” IEEE Comp. Arch. Letters, vol. 16, no. 2, pp. 158–161, 2017.

[20] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro, “Preventing
Memory Error Exploits with WIT,” in IEEE Symposium on Security and
Privacy, May 2008, pp. 263–277.

