
FPGA Vendor-agnostic IP-XACT- and XSLT-based
RTL Design Generator

R. Machado, S. Pinto, J. Cabral, A. Tavares, J. Monteiro
Centro Algoritmi - University of Minho

{rui.machado, sandro.pinto, jorge.cabral, adriano.tavares, joao.monteiro}@algoritmi.uminho.pt

Abstract—The growing complexity of current embedded sys-
tems increases not only the time-to-prototype and time-to-market,
but it also requires a major effort around repetitive engineering
tasks in order to maximize the efficiency and minimize the money
investment. A lot of research has been done on this field, leading
system development, test automation and system reutilization to
huge relevance and considerable importance in industry and
academia. Using eXtensible Markup Language (XML) files to
store Intellectual Property (IP) metadata, the IP-XACT standard
arises as a possible solution for IP reutilization and vendor
independence.

This paper describes a RTL design generator that uses IP-
XACT components description and apply XSLT transformations
for complete system generation, following a generative program-
ming (GP) approach while automating the design flow through
the integration and interoperability of external tools needed to
design, implement and finally deploy the final system under the
chosen FPGA board. The aim is to provide a unified and easy to
use interface for code generation and deployment independent
from FPGA vendors, i.e., fostering vendor-agnosticism.

Index Terms—HDL code generator, IP-XACT, XSLT, XML,
process automation.

I. INTRODUCTION

Embedded systems have rapidly grown both in dimension
and complexity over the past few years, making design,
implementation, verification and validation into very hard and
complex tasks [1], [2]. This increasing complexity of the
development process leads not only to a larger prototyping
development time which ultimately, can result in missing time-
to-market, but also to an urge for higher levels of abstraction,
which most often implies the combination of multiple frame-
works, each specialized in different phases of the design flow
[3].

The reutilization of verified IP is frequently addressed as a
possible solution for complexity issues, allowing companies
to share the costs and risks associated to IP creation and
validation and reducing duplicate development efforts [3],
[4]. However, the integration process of different IPs is itself
prone to errors and needs to be validated. Some existent
works in academia and industry present frameworks capable of
automating the interconnection process to reduce verification
efforts, and IP-XACT standard is usually pointed as a solution
for IP reutilization [1], [2], [3], [4], [5], [6]. Simultaneously,
embedded product development and maintenance can require
porting between platforms [2].

One possible approach to address the aforementioned issues,
is to develop mechanisms to automate the code generation

process and abstractions that can offer to the developer a
uniform interface independent from the FPGA vendor. Such
interface can reduce not only errors during the integration
and porting stage but also reduce the time-consumption from
validation activities and relieves the need for multiple vendor
frameworks knowledge [3], [5].

This paper describes a code generator fully independent
from vendors (e.g., including mapping the FPGA design to
chosen board pins as described in the .ucf files) and easily
extensible, based on XSLT, to interpret and convert IP-XACT
files into HDL code. As result, this work utilizes a set of XSLT
files capable of interpreting an IP-XACT design and generating
the respective Verilog code as well as associated Constraint
files and a mechanism that identifies the target FPGA and
automatically generates a set of batch files to synthetize the
code and program it. The use of XSLT makes it possible to
achieve an IP-XACT to Verilog converter that only depends
on the standard. As the communication process between the
framework and the remaining external tools is completely
transparent to the developer, the code generator offers a single
and simple interface to every vendor FPGA platform. The
presented code generator is part of a bigger project that fully
implements an IP-XACT enabled framework.

The remainder of this paper is structured as follows: Section
II describes, briefly, the IP-XACT standard, and points and
outlines also some related work. Section III focus on the
adopted methodology, describing the mapping between IP-
XACT and Verilog as well as the research performed in order
to support the external tools used. Then, Section IV details and
discusses the code generator implementation, and its XSLT
files creation for the communication between the generator
and the external tools needed to program the target FPGA.
Section V describes the evaluation process, presenting some
results. Finally, Section VI concludes, pointing also some
future improvements.

II. BACKGROUND AND RELATED WORK

A. IP-XACT Overview

The IP-XACT standard [7] documents IP used in the devel-
opment, implementation and verification of electronic systems
with metadata through XML files. IP-XACT is independent
from any design process and does not contemplate behavioural
characteristics related to the IP that are not relevant to integra-
tion. The purpose of IP-XACT standard is to provide well de-
fined and unified metadata about the components and designs



composing electronic systems, making it possible to easily
import and export IP between Electronic Design Automation
(EDA) tools from multiple IP vendors. IP-XACT also supports
the automation of the design flow where different tools are
used through generators. It encapsulates information about the
component interface and communication style (protocols) that
can be used for validation during IP integration [6]. Even
though it does not specify IP behaviour, it is possible to attach
to the metadata files containing the IP behaviour (e.g., HDL
files).

IP-XACT schema representation relies in seven top schema
definitions [7]. The bus definition describes the high-level
attributes of the interface, whereas the abstraction definition
describes the low-level attributes of the interface associated to
specific bus definition like the number of ports, their direction
and width. The component element is used to describe any
type of IP such as cores, peripherals or buses like networks.
An IP-XACT component can be hierarchical to integrate
in its definition other IP-XACT components or be a leaf
component otherwise. Although a hierarchical component is
composed by many other IP-XACT components its IP-XACT
description need only be a leaf object as it fully describes the
component. The design description is another of the top seven
schema definitions and complements the information related
to hierarchical components. It gathers information relative to
the instantiated components, their connections between them
and their configuration. The IP-XACT abstractor defines the
interconnection between two bus interfaces that share the same
bus definition but different abstraction definition. To represent
a specific design flow, IP-XACT uses the generator chain
object which is based on tasks, where each task can be a
single generator or a reference for another generator chain.
Finally, the design configuration is the IP-XACT object used to
gather additional information relative to a design or generator
chain. This object is particularly useful when porting IP-XACT
designs between design environments.

IP-XACT has been design with HDL descriptions in mind
and, as result, does not directly support software objects
as well as communication interfaces between hardware and
software objects. As result many works has been proposing
extensions to the standard in order to overcome this limitation
[5], [6].

B. IP-XACT-based Tools

Kactus2 [1], [8], [9] is a framework that aims at enabling
software and hardware engineers ”to speak the same lan-
guage”, and so, helping during the description of system
architecture. It focus on simplifying design flow through IP
reutilization by using IP-XACT metadata for describing IPs
which will leverage the interoperability between platforms and
tools. This framework also presents some standard extensions,
using the VendorExtensions field available in the standard [5],
in order to represent software IPs in metadata form. In this
way it is possible to efficiently improve the communication
between Hardware and Software Engineers.

Fig. 1: RTL Coding Flow: The Code Generator Block Diagram

Synopsys coreTools [10] is a set of tools for IP packaging
used in a knowledge base design and verification flow. Accord-
ing to the datasheet, it is possible to achieve an improvement
of 60% of the time when designing the system using an IP-
based design and verification flow with IP packaged for as-
sembly. The coreTool family is composed by: (i) coreBuilder,
a packaging tool; (ii) coreAssembler, an IP assembly tool
that automatically generates the interconnect and configured
Register-Transfer Level (RTL); (iii) and coreConsultant, an
utility tool to configure, implement and validate individual IP.

MAGILLEM 4.0 [11] is a java-based plug-in for Eclipse
that encompasses a set of tools to manage an IP-XACT based
database and a whole design environment for IP creation and
reutilization.

III. METHODOLOGY

Fig. 1 depicts the block diagram of the developed code
generator tool. Accordingly to that, three modules mainly
compose the code generator: (i) the XSL transformer con-
sisting of a set of XSLT files that convert the ’IP-XACT
Specification for Verilog-based IP’ into Verilog files; (ii) a
transparent external tools interface based on a set of auto-
generated batch files; and (iii) a graphical user interface where



the user can select the vendor and target FPGA device. Once
the order to generate the code is issued, the code generator
queries the IP-XACT repository to obtain all related ’IP-XACT
Specification for Verilog-based IP’ that will be processed by
the XSL transformer to generate the set of Verilog files, the
design’ associated constraint files and the needed batch files
for the interface with the external tools which depend on the
selected vendor and FPGA device. Then the batch files are
executed through command line interface to run the external
tools. Notice that the batch files already come with references
pointing to the previously created Verilog files, allowing the
external tools to access them. As result, a bitstream is obtained
as well as a list of the available FPGA devices connected to
the host computer, and the user can then select the one she/he
wants to program.

Two different methodologies were considered to implement
the code generator. The first one was based on the classes that
represent the IP-XACT standard. This option, although easier
to implement, makes the code generator highly attached to
the created framework. Kactus2 uses this approach, but one of
the aims of the developed framework in which this generator
is included is to be as modular as possible. The use of
XSLT makes the code generator completely independent from
the development environment as well as from the developed
application, offering great flexibility if structural changes are
made to the standard. For these reasons and also because the
standard is represented through XML files, we decided for the
XSL transformer to implement the code generator.

A. XSL Transformer

As XSLT becomes more mainstream and supported by
various OS (Operating Systems) and programming languages,
this makes the code generator highly portable. Any framework
can also use the code generator as it is completely independent
from the framework architecture (i.e., loosely coupled to
the framework architectures), although tightly-coupled to the
standard.

XSL files are largely used to filter the data and the way to
display them in Hyper Text Markup Language (HTML) pages,
making it possible to create different pages with the same XSL
file by only changing XML file content. Another advantage of
using XSLT is the fact that there is no need to recompile the
application every time the files are changed. That means that
if the standard for some reason is upgraded, it is only needed
to change the XSLT file to handle the changes without having
to recompile the whole code generator.

The XSL transformer, as composed by the set of XSLT
files, was created in a way that only the information given
by the standard suffices to successfully generate the Verilog
files of either leaf components or hierarchical components
and to successfully instantiate all components and map all
interconnections presented in an IP-XACT design.

B. External tools interface

In order to have the most transparent interface between the
user and the external tools, the Xilinx and Altera tools interface

via command prompt was studied. According to Xilinx com-
mand prompt user guide [12], [13], the design flow is divided
in three main phases: (i) synthesis; (ii) implementation; (iii)
and verification. Each of these phases includes one or more
Xilinx tools to be executed. For Altera, the software Quartus
II is used to develop the FPGA projects which has a tool for
each design flow phase [14].

IV. IMPLEMENTATION

The framework chosen to develop the code generator was
Visual Studio and the implementation language was C#. Such
decision was made based on a time/effort relationship since
Visual Studio was a well-known platform with a huge amount
of information and libraries available. Additionally, it has a
very powerful debug tool and offers mechanisms for version
control and project planning.

The code generation flow follows essentially three main
steps: (i) the XSL transformer development based on several
stylesheets for IP-XACT components and designs; (ii) the
constraint files creation, which are dependent from the target
platform; (iii) and the target’s abstraction implementation
through automatic batch files generation and external tools
invocation.

Converting a non-hierarchical IP-XACT component into its
respective Verilog file is very straightforward. As previously
described, the standard only specifies interfaces, so it is not
possible to automatically generate the component behaviour
code, instead only the code interface can be automatically
generated. The flowchart presented in Fig. 2 illustrates how
the process is done. First, the module is instantiated with a
name given by values in the name plus version fields from the
standard. Then all the interfaces in the XML file are defined in
Verilog. After that, the details about the interfaces are extracted
and the ports declared with the direction and number of bits of
each port. Finally, the endmodule keyword ends the process.

Contrarily, converting an IP-XACT design, which repre-
sents a hierarchical component, is not so straightforward.
An IP-XACT design can be compared to a graph where
the componentInstances elements are vertices and the
interconnections the edges. In other words, the problem
is that there is no particular order in the IP-XACT files
to represent the different connections, however that order
is very important during the conversion process to ensure
that no duplicate connections occur. Fig. 3 illustrates the
aforementioned issue. The example depicts a design with four
components, each one with an inout data bus. Component 1 is
connected to component 2, and then component 2 is connected
to component 3 and 4 by the same port. This means that
component 1 is also connected to component 3 and 4. In this
situation only one wire port is enough to connect all the four
components. To identify these relationships, the IP-XACT files
need to be read more than once. This guarantee that no more
auxiliary ports, then the needed ones, are created. Due to XSLT
limitations, the solution to these issues was to use the function
and sequence elements from XSLT 2.0. These two elements
combined enabled running the file recursively saving the return



Fig. 2: IP-XACT-based IP to Verilog Transformation
Flowchart

Fig. 3: Multiple Port Connection Example

values from one invocation to another. As Visual Studio only
supports XSLT 1.0, a plug-in from Saxon was installed in
order to support XSLT 2.0.

In addition to the Verilog files, it is necessary to have a
set of constraints, required to map the design ports to the
respective FPGA board pins, for example. Depending on the
FPGA vendor, this can be achieved in different ways. For
example, Xilinx uses a .ucf file to define the system constraints
while Altera, more properly, the Quartus II framework, defines
these constraints in the same file used to create the project.
Depending on the vendor, a XSL stylesheet is accordingly
applied to the IP-XACT component file that filters all its ports
and instantiate them. Then the user just has to complete the
instantiates with the desired FPGA pin.

‘timescale 1ns/1ps

//This document was generated by IP−XACT Enabled Framework

module Controller(
CLk clock,
RST reset,
InputValue a,
FeedBackSignal a,
PIDControl result,
KdOut result,
KiOut result,
KpOut result

);

...

P P(
.clock(CLk clock),
.reset(RST reset),
.Kp SetValue(converter1632 generic32 result),
.Kp we(),
.Error(subbError generic32 result),
.P control Signal(P generic32 P control Signal),
.KP(P generic32 KP)

);

I I(
.clock(CLk clock),
.reset(RST reset),
.error(subbError generic32 result),
.ki we(),
.kiSetValue(converter1632 generic32 result),
.error max setValue(converter1632 generic32 result),
.error min SetValue(converter1632 generic32 result),
.error max we(),
.error min setvalue(),
.samplingTime(divider1 generic32 result),
.I control signal(I generic32 I control signal),
.ki(I generic32 ki),
.PID enable()

);

D D(
.clock(CLk clock),
.reset(RST reset),
.Kd SetValue(converter1632 generic32 result),
.Kd We(),
.Error(subbError generic32 result),
.Sampling Time(divider1 generic32 result),
.D control signal(D generic32 D control signal),
.Kd(D generic32 Kd),
.PID Enable()

);

Listing 1: Generated Verilog Code

Batch files are created to automate external tools invocation
for the compilation and synthesis of the generated HDL code.
The invoked external tools depend on the selected platform, so
a different batch file is generated accordingly for each platform
vendor. These batch files are generated from an IP-XACT gen-
erator chain file which stores information about the executable
files and the parameters needed to compile and synthesize
a design under a given platform. Such approach makes the
proposed code generator completely vendor-independent, and
supporting another vendor is dictated only by the creation of
another IP-XACT generator chain file without changing the
source code of the generator (i.e., the code generator is vendor-
agnostic). Log files are generated to inform the user about the
output of each compile phase. This way the user can have
feedback about which phases were completed and which are
still running.



Fig. 4: PID Controller Design

The implementation of external tools invocation was divided
into two phases. The first one is responsible for generating the
bitstream for the FPGA. At the end of this phase the developer
can analyse the feedback provided by the framework or the
log files, and accordingly fix the errors pinpointed during the
compilation process. The second phase consists in burning
the bitstream into the target FPGA. The framework identifies
which targets are available from the chosen vendor and after
the user selects the desired FPGA the programming option
becomes available. The splitting between the compilation and
the programming phase was implemented using two different
batch files. One with all the commands for each design step of
the flow, and another one with only the commands responsible
for programming the FPGA with the desired bitstream.

V. EVALUATION

In order to test the automatic code generation, a
proportional-integral-derivative (PID) controller as presented
in [15] was modeled using the framework that encompasses the
IP-XACT- and XSLT-based code generator. The test consists
in modeling the PID controller and then generate the code
representative of its top module. The obtained result should
be similar to the top module manually implemented in [15],
the bitstream correctly created and then deployed on the target
FPGA platform.

The platforms used to test the designed system were Basys2
from Xilinx and the Altera DE2-70. Basys2 has a Spartan3E
FPGA, is compatible with every version of Xilinxs ISE and
is integrated into the ADEPT programming application from
Diligent. Altera DE2-70, for instance, has an Altera Cyclone

II 2C70 FPGA and is supported by Quartus II software and
programmed through USB Blaster.

Each module must specify its associated IP-XACT repre-
sentation (i.e., ’IP-XACT Specification for Verilog-based IP’)
that will be generated according to the attributes of component
Verilog file. After having the components on the repository
they can be instantiated in the design creator (see Fig. 4)
and the respective mapping between components can then be
made. Any attempts to connect two buses with a different
interface type will be automatically aborted and the user
notified. After finalizing the design two new IP-XACT files are
created, one for the design and another one to the component
of the design.

The code can then be generated. To do so, the FPGA
(vendor and target) is selected (Fig. 5) and as result of this
operation two files are created, one Verilog file representing
the top hierarchical module of design and the other with the
ports that have to be mapped to the respective pins of the
target FPGA (e.g., ucf). These files are placed in a specific
directory named project, along with a batch file that contains
the paths to all the components’ Verilog files included in
the design. The result is a PID controller virtually similar to
the one presented in [15], as the Verilog code is exactly the
same except from the mapping between components that was
generated automatically and presented in Listing 1).

VI. CONCLUSION

The IP reutilization combined with vendor IP independence
fosters a reduced verification efforts while allowing companies



Fig. 5: Code Generation Interface

to share development risk that can be critical to their sustain-
ability. Moreover, the automatic code generation contributes
to an integration process less vulnerable to errors. Combining
the two above factors will simplify both system creation and
maintenance.

In this paper a flexible code generator was presented, which
is integrated in a complete IP-XACT enabled framework for IP
creation and reutilization. Adequately populating the IP-XACT
repository of the developed IP-XACT enabled framework will
reduce the time-to-market pressure for the development of
higher complexity systems with practically no errors. The code
generator proved to perfectly manage the mapping between
Verilog components, reducing the effort and risk of the integra-
tion task and at the same time offers great flexibility in terms
of platform and framework independence as well as in terms
of future upgrades. Some frameworks already use IP-XACT
metadata to generate HDL code, but most of them are attached
to specific vendors. Only Kactus2 provides a framework that is
vendor-independent on the design and implementation phase,
but once the RTL design is generated, then it needs to use
a vendor specific tool to program the FPGA. The presented
work goes beyond state-of-art by also offering agnosticism in
the FPGA programming interface.

In future work, more IP-XACT generator files should be
created, in order to support the majority of the FPGA vendors.
Changes can be made to the code generator in order to present
only the FPGA devices connected to the host computer that
have sufficient resources for the implemented design (this
way the developer cannot select a FPGA that has not enough
resources to deploy the intended design). Finally, a graphical
interface to map the FPGA pins to the design ports can be
implemented and an IP-XACT extension created to store this
information, enabling a complete automatic generation of the
constraint files.

VII. ACKNOWLEDGEMENTS

This work has been supported by FCT - Fundação
para a Ciência e Tecnologia within the Project Scope:

UID/CEC/00319/2013.

REFERENCES

[1] A. Kamppi, L. Matilainen, J. Maatta, E. Salminen, T. Hamalainen,
and M. Hannikainen, “Kactus2: Environment for embedded product
development using ip-xact and mcapi,” in Digital System Design (DSD),
2011 14th Euromicro Conference on, Aug 2011, pp. 262–265.

[2] E. Salminen, T. Hamalainen, and M. Hannikainen, “Applying ip-xact in
product data management,” in System on Chip (SoC), 2011 International
Symposium on, Oct 2011, pp. 86–91.

[3] W. Kruijtzer, P. van der Wolf, E. de Kock, J. Stuyt, W. Ecker, A. Mayer,
S. Hustin, C. Amerijckx, S. de Paoli, and E. Vaumorin, “Industrial ip
integration flows based on ip-xact standards,” in Design, Automation and
Test in Europe, 2008. DATE ’08, March 2008, pp. 32–37.

[4] A. Arnesen, K. Ellsworth, D. Gibelyou, T. Haroldsen, J. Havican,
M. Padilla, B. Nelson, M. Rice, and M. Wirthlin, “Increasing design pro-
ductivity through core reuse, meta-data encapsulation, and synthesis,” in
Field Programmable Logic and Applications (FPL), 2010 International
Conference on, Aug 2010, pp. 538–543.

[5] A. Kamppi, L. Matilainen, J.-M. Maatta, E. Salminen, and
T. Hamalainen, “Extending ip-xact to embedded system hw/sw inte-
gration,” in System on Chip (SoC), 2013 International Symposium on,
Oct 2013, pp. 1–8.

[6] D. Braga, F. Fummi, G. Pravadelli, and S. Vinco, “The strange pair:
Ip-xact and univercm to integrate heterogeneous embedded systems,” in
High Level Design Validation and Test Workshop (HLDVT), 2012 IEEE
International, Nov 2012, pp. 76–83.

[7] “Ieee standard for ip-xact, standard structure for packaging, integrating,
and reusing ip within tool flows,” IEEE Std 1685-2009, pp. 1–374, Feb
2010.

[8] J.-M. Maatta, M. Honkonen, T. Korhonen, E. Salminen, and
T. Hamalainen, “Dependency analysis and visualization tool for kactus2
ip-xact design framework,” in System on Chip (SoC), 2013 International
Symposium on, Oct 2013, pp. 1–6.

[9] T. U. of Technology, “Kactus2 homepage.” [Online]. Available:
http://funbase.cs.tut.fi/#kactus2

[10] Synopsys, “Synopsys coreTools - IP Based Design and Verification,”
2008. [Online]. Available: https://www.synopsys.com/dw/doc.php/ds/o/
coretools ds.pdf

[11] E. Vaumorin and J. Stuyt, “SPIRIT IP-XACT Extensions and
Exploitation for Verification Software Methodology ,” 2006. [Online].
Available: http://www.dempa.co.jp/magillem/pdf/SPIRIT Methodology.
pdf

[12] Xilinx, “XST User Guide - UG627 (v11.3),” September 2009.
[Online]. Available: http://www.xilinx.com/support/documentation/sw
manuals/xilinx11/xst.pdf

[13] ——, “Command Line Tools User Guide - UG628 (v14.1),” April 2012.
[Online]. Available: http://www.xilinx.com/support/documentation/sw
manuals/xilinx14 1/devref.pdf

[14] Altera, “Quartus II Handbook Volume 2: Design Implementation and
Optimization,” 2014. [Online]. Available: https://www.altera.com/en
US/pdfs/literature/hb/qts/qts qii5v2.pdf

[15] T. Gomes, F. Salgado, P. Garcia, J. Mendes, J. Monteiro, and A. Tavares,
“A pid controller module tightly-coupled on a processor datapath,” in
Industrial Electronics (ISIE), 2012 IEEE International Symposium on,
May 2012, pp. 1352–1356.


