
A TrustZone-assisted Hypervisor Supporting
Dynamic Partial Reconfiguration

José Ribeiro
Centro Algoritmi

Universidade do Minho
a71881@alunos.uminho.pt

Nuno Silva
Centro Algoritmi

Universidade do Minho
a70616@alunos.uminho.pt

Sandro Pinto
Centro Algoritmi

Universidade do Minho
sandro.pinto@dei.uminho.pt

Adriano Tavares
Centro Algoritmi

Universidade do Minho
atavares@dei.uminho.pt

Abstract—Reconfigurable systems have been proven to be very
powerful in terms of flexibility and performance. With virtuali-
zation being imperative in many modern embedded systems, the
juxtaposition between this two key technologies was imminent.
Hypervisors like the Mini-NOVA enforce this but neglect funda-
mental features, such as not making use of hardware extensions
to help with virtualization and not taking full advantage on the
offloadable features to reconfigurable hardware modules.

This work in progress paper presents a Microkernel-like
TrustZone-assisted Real-Time Hypervisor that dynamically man-
ages software and reconfigurable hardware tasks, combining
these technologies with main focus on Dynamic Partial Recon-
figuration (DPR) towards a promising solution, as shown by the
encouraging preliminary results. It is also discussed our research
roadmap for the future.

Keywords—Virtualization, ARM TrustZone, Hypervisor, FPGA,
Dynamic Partial Reconfiguration

I. INTRODUCTION

The growing necessity of heterogeneous environments
around embedded system solutions has led to a rise in the
complexity of these systems. To manage such increase in
complexity while keeping under control metrics such as size,
weight, power and cost (SWaP-C), virtualization has become
a normalised practice. To further complement this approach,
and given the great emphasis to flexibility and performance on
some safety-critical environments, there is a high investment
in exploring Field-Programmable Gate Arrays (FPGA) assisted
approaches [1].

Virtualization technology allows both general-purpose com-
puting and real-time requirements to be achieved by enabling
concurrent execution of multiple Virtual Machines (VMs) on
the same hardware processor. Unfortunately, these virtualized
embedded systems may not be able to meet the real-time
demands aforementioned, as a result of the performance
overhead induced to the processor cores by the traditional
software-based technology. To solve this issue, many hardware
extensions (i.e. Intel’s Virtualization Technology (VT) [2], [3],
Arm’s Virtualization Extensions (VE) [4], [5] and TrustZone
(TZ) [6], [7]), have been developed to support these systems.

Towards achieving better solutions for higher-performance
virtualized embedded systems, a new architecture based on
the combination of processor cores with hardware extensions
and FPGA fabric emerged [8]. This design strategy has been
scrutinised for many years from a myriad of different angles,

whether by only making use of the virtualization hardware
extensions [9], [5], [10], [11], or by also offloading software
functionalities to FPGA components [12]. However, more
recently, the use of DPR has been investigated on a wider
range of embedded systems’ domains, but not constrained to
virtualized systems. This is evident in [13], where DPR tech-
nology is used as a powerful flexibility tool for an industrial
system and, in the embedded systems’ domain, DPR hardware
modules have also been shown to work concurrently with real-
time software tasks on a Real-Time Operating System (RTOS)
[14]. Regarding virtualized systems, Xia’s work on the Mini-
NOVA Hypervisor [8], [15] has become a staple for DPR in
virtualized embedded systems, making use of DPR alongside
a traditional para-virtualized Hypervisor.

The goal of this work in progress is to create a Microkernel-
like TrustZone-assisted Real-Time Hypervisor that dynami-
cally manages software and DPR hardware tasks. This Hy-
pervisor will present some key differences from the Mini-
NOVA, namely: (1) fully-virtualized Hypervisor making use of
TrustZone hardware extension, contrary to the para-virtualized
nature of the Mini-NOVA; (2) offloading Hypervisor services,
such as Inter-Partition Communication (IPC) mechanism with
security capabilities, to DPR hardware peripherals, differently
from the Mini-Nova, which only offloads RTOS tasks to
DPR; (3) extend TrustZone capabilities to the DPR hardware
peripherals making them secure and, as such, guaranteeing
the hardware Trusted Computing Base’s (TCB) integrity. The
board chosen for this research work is the Xilinx’s Zybo from
the Zynq-7000 System-on-Chip (SoC) family [16], [17], as it
contains all the components (TrustZone-enabled processor and
peripherals as well as FPGA fabric) required for building the
proposed prototype.

II. BACKGROUND

A. ARM TrustZone

TrustZone technology consists on a set of hardware-based
security extensions to ARM SoCs implemented since the
ARMv6 architecture. These hardware security extensions pro-
vide a secure and separate execution environment that protects
the integrity and confidentiality of secure-sensitive processing,
by splitting the hardware and software resources into two
worlds - the secure world and the non-secure world [6], [18].



The TrustZone hardware architecture can be seen as a dual-
virtual system, which splits all the system’s physical resources
into two possible virtual environments. The major changes
introduced in the hardware architecture include the ability to
tag system resources as belonging to the secure or normal
world. To indicate in which world the processor is executing,
there is the new 33rd processor bit - NS (Non-Secure) bit,
which is also extended to the rest of devices, enhancing control
for the system designer over peripheral buses and memory
[18], [19]. To preserve the processor state during the world
switch, TrustZone adds an extra processor mode: the monitor
mode. When running in monitor mode, the processor state is
always considered secure. Since the processor only runs in one
world at a time, software stacks in both worlds can be bridged
via a new privileged instruction - Secure Monitor Calls (SMC).
The monitor mode can also be entered by configuring it to
handle interrupts and exceptions in the secure side.

The memory infrastructure outside the core can also be
partitioned into the two worlds through the TrustZone Address
Space Controller (TZASC). Dynamic Random Access Mem-
ory (DRAM) can be partitioned into distinct memory regions,
each of which can be configured to be used in either world
or both. The processor also provides two virtual Memory
Management Units (MMUs), and isolation is still available
at the cache-level. System peripherals can be also configured
as secure or non-secure through the TrustZone Protection
Controller (TZPC).

B. µRTZVisor

µRTZVisor [10] stands for Microkernel real-time
TrustZone-assisted Hypervisor, and is an extended version
of RTZVisor [11] for a Microkernel-like architecture, while
following an object-oriented approach. µRTZVisor targets
security not only from the outset but also from the onset [10],
by applying a secure development process.

Contrarily to existing Microkernel-based solutions,
µRTZVisor is able to run nearly unmodified guest Operating
Systems (OSes), while also providing a high degree of
functionality, configurability and real-time support. It
implements a scheduling policy based on time domains,
which can have different priorities and are scheduled
according to a preemptive, round-robin schema. Performed
experiments demonstrate a performance overhead around 2%
for a 10 milliseconds guest time domains [10].

Also crucial on the µRTZVisor is its capability-driven Inter-
Partition Communication (IPC) mechanism that works in con-
junction with the real-time scheduler and memory subsystem
(Figure 1) [10]. Such capability-driven IPC is dictated by
the Microkernel-like architecture of the µRTZVisor in order
to provide secure and efficient ways of sharing data among
services, drivers and Guests.

III. THE PROPOSED DPR-ASSISTED µRTZVISOR

The design and implementation of the µRTZVisor was
tailored for a Zynq-7000 SoC [10] and so, the proposed
architecture is divided into its two main functional blocks:

Fig. 1. µRTZVisor architecture.

the Processing System (PS) and the Programmable Logic
(PL). The PS is the Central Processing Unit (CPU) and
includes the software computing resources, such as the ARM
Cortex-A9 processor, the On Chip Memory (OCM) and var-
ious peripherals. On the CPU, the µRTZVisor hosts guest
applications/software and is responsible for scheduling these
components properly. The PL will contain different hardware
accelerators and execute concurrently with the PS side. The
subsystems in the PS are interconnected among themselves,
and connected to the PL side, through an ARM AMBA AXI
Interconnect.

The SoCs of the Zynq family support DPR either under
the control of the software running on the PS through the
Device Configuration Interface (DevCfg), which launches a
Direct Memory Access (DMA) transfer via the Processor
Configuration Access Port (PCAP) or under the control of the
hardware via the Internal Configuration Access Port (ICAP),
which is capable of self-configuration from the PL side [20].
The major disadvantages of using ICAP, is the fact that it uses
an AXI4-Lite port as a transfer port as well as requiring extra
hardware resources. The use of Partial Reconfiguration (PR)
allows the designer to define multiple Partial Reconfigurable
Regions (PRR) in the FPGA and dynamically reconfigure them
with different functionalities during runtime. Partial bitstreams
are loaded to the PRRs via the previously mentioned ports.
DPR also allows the system’s power consumption to be
reduced when compared to full reconfigurations each time a
functionality change is required. Partial bitstreams are also
smaller than full bitstreams and the reconfiguration time is
shorter, which leads to less processing time. Other feature en-
abled by DPR, is that it can be used to reconfigure PRRs with
blank bitstreams while they are inactive and not necessary, as
long as the throughput for the configuration is high enough
[21], reducing power consumption.

The proposed architecture is shown in Figure 2. µRTZVisor
will be extended with a DPR Manager in order to dynamically
support modifications/changes of specific parts of hardware
components. This way, the FPGA resources can be considered
as standard user applications making the simultaneous man-



Fig. 2. DPR-assisted µRTZVisor architecture.

agement of hardware and software tasks possible. Therefore,
the manager will allow the Hypervisor to reconfigure multiple
PRRs which will focus on three main parts:

• Hardware Tasks: As DPR allows to reprogramme a part
of the FPGA while the rest of the system is still running
without interference, it is possible to introduce hardware
tasks, which are tasks from the OSes that are offloaded
to hardware. A set of PRRs will be used as containers
for hardware tasks accelerators which are predefined
bitstream files that hold the module fabric information for
the desired functionality and any guest may require to use.
When a guest sends the request to use a hardware task
to the manager, it will check if the task is available for
usage and if so, assign it to the guest. Different hardware
tasks are dispatched by programming the assigned PRRs
with the bitstream file for the specific task.

• Hardware IPC: Offload IPC to different hardware im-
plementations, while testing the benefits of creating a
dedicated IPC peripheral capable of accelerating data
transfers and increasing security. This encompasses lever-
aging a capability-based access-control facility, which
will enforce Information Control-Flow (ICF) and contain-
ment by communication relationships. Also, make use of
secure DMA transfers to upgrade transmission rates while
maintaining TrustZone features and coherency with the
µRTZVisor and the existent IPC mechanism. Some of
the hardware module components will be PR to benefit
the desired data transfer.

• Security Modules: Expand the security spectrum of the
Hypervisor by implementing security by diversity. This
means implementing the same behaviour/functionality
using different implementations. For instance, when the
system is detected to be under attack, the DPR manager
can reconfigure security modules through DPR to differ-
ent implementations with similar behaviour.

IV. PRELIMINARY RESULTS

In order to better understand the impact of partial reconfig-
uration, a test was executed to measure reconfiguration times
for different bitstream sizes. The results presented for this test
have been collected in a test application in which the partial
bitstream files were stored into the DDR3 memory.

The tests showed that each bitstream file describing the
same PRR on the FPGA has exactly the same dimension and
takes about the same time to be loaded to the PRR. Table
I shows that on the Xilinx Zybo, with PCAP/DMA-based
approach, the PCAP throughput is substantially constant and
makes the reconfiguration time linearly proportional to the size
of the partial bitstream files.

TABLE I
RECONFIGURATION TIMES

Bitstream Size Avg. Reconfig. Time Throughput
(kB) (ms) (MB/s)
108 0.87 124.36
584 4.68 124.46
1282 10.28 124.67

Some Hypervisor benchmarks were executed on this early
stage, with the intention of a later comparison with the
modified system. The time of the context-switching operation
for each scenario, running partitions in separate 10 ms time
domains, was measured 10,000,000 times for each switching
and the Worst Case Execution Times (WCET) are shown in
Table II. These results were taken from [10].

TABLE II
CONTEXT SWITCH WCET (µS)

Guest–Guest 166.68
Task–Task 10.38
Guest–Task 19.13
Task–Guest 19.63

Task–Different Guest 156.00

Also in [10], the asynchronous IPC performance was mea-
sured but only reflecting the time that it takes to perform the
respective hypercalls from a guest partition. For a 64 byte
message size, the hypercall execution time is of 4.36, 4.17
and 5.49 µs for each operation, increasing by about 1 µs for
each additional 64 bytes in the message, as can be seen in
Table III.

TABLE III
ASYNCHRONOUS IPC PRIMITIVES LATENCY (µS)

Message Size (bytes) Send Receive Send Receive
64 4.36 4.17 5.49

128 5.17 4.75 6.31
192 6.00 5.16 7.13
256 6.82 5.72 7.98
320 7.69 6.21 8.8

The synchronous IPC performance, which follows the typ-
ical client-server communication scenario, was also evaluated
on a Guest-to-Guest, Guest-to-Task and Task-to-Task scheme.
in Table IV, the Guest-to-Guest times are shown.



TABLE IV
SYNCHRONOUS GUEST-TO-GUEST IPC COMMUNICATION LATENCY (µS)

Message Size (bytes) Send One-Way Two-Way
64 15.21 195.14 385.73
128 16.24 197.23 389.45
192 16.78 199.76 394.18
256 18.58 202.65 398.10
320 18.88 204.66 402.39

V. RESEARCH ROADMAP

So far, the controller is capable of reconfiguring PRRs
dynamically with functional hardware accelerators. However,
it is not yet integrated with the Hypervisor. As such, the next
essential step is to integrate the DPR software manager on
the Hypervisor to trigger the hardware reconfiguration. To
synchronise the DPR hardware modules with the software
manager, a fixed hardware module will be implemented which
will hold information about the modules.

Following is the implementation of the hardware modules
for each of the three intended FPGA-based features, as shown
in Fig. 2. Then, our focus will be centred on making all the
PRRs coexist together, which will require the distribution of
the FPGA resources according to the modules’ needs. Once
all the modules are implemented and the wanted controller
behaviour is achieved, in such a way that it can control
all the PRRs dynamically, we will work on refining the
DPR hardware controller to guarantee the validation of the
information it holds.

Upon reaching this stage, we want to exhaustively eval-
uate the controllers in the performance, memory footprint,
hardware cost and energy consumption metrics. The research
will then continue towards improvements in the controller
performance in order to optimise hardware usage and tasks
management.

VI. CONCLUSION

Minding the great emphasis given to DPR technology on
recent research, it has become one of the key technologies in
the embedded systems field. Given its potential for deploying
hardware modules on-the-fly, DPR has the ability to bring
immense flexibility to a system, as well as an overall per-
formance improvement. The merging of this technology with
virtualization is becoming eminent, considering the benefits of
carrying DPR to the virtualized embedded systems’ domain, as
proven by Xia’s Mini-NOVA implementation. However, there
are some oversights with this implementation.

This paper presents a work in progress on the imple-
mentation of a Microkernel-like TrustZone-assisted Real-Time
Hypervisor that dynamically manages software and DPR hard-
ware tasks, while only introducing a low performance cost
from the reconfiguration process and adding the physical cost
of the hardware components.

The research roadmap section described the work for the
near future, which will focus on the development of the DPR

controller and the hardware modules, while also integrating
with the chosen Hypervisor.

VII. ACKNOWLEDGMENTS

This work has been supported by COMPETE: POCI-01-
0145-FEDER-007043 and FCT - Fundação para a Ciência e
Tecnologia within the Project Scope: UID/CEC/00319/2013.

REFERENCES

[1] M. Valdes Pena, J. Rodriguez-Andina and M. Manic, “The Internet
of Things: The Role of Reconfigurable Platforms,” IEEE Industrial
Electronics Magazine, vol. 11, no. 3, pp. 6–19, 2017.

[2] G. Neiger, “Intel Virtualization Technology: Hardware Support for Effi-
cient Processor Virtualization,” Intel Technology Journal, vol. 10, no. 3,
pp. 167–178, 2006.

[3] R. Uhlig, et al., “Intel virtualization technology,” Computer, vol. 38, no.
5, pp. 48–56, 2005.

[4] R. Mijat and A. Nightingale, “Virtualization is coming to a platform near
you,” ARM White Paper, pp. 1–12, 2011.

[5] T. Shimada, T. Yashiro, N. Koshizuka, and K. Sakamura, “A real-time
hypervisor for embedded systems with hardware virtualization support,”
in Proc. 2O15 TRON Symposium (TRONSHOW), 2016.

[6] ARM Limited, “ARM Security Technology - Building a Secure System
using TrustZone Technology,” ARM White Paper, 2009.

[7] A. M. Azab, et al., “Hypervision Across Worlds : Real-time Kernel
Protection from the ARM TrustZone Secure World,” in Proc. 2014 ACM
SIGSAC Conference on Computer and Communications Security, 2014.

[8] T. Xia, J. C. Prevotet, and F. Nouvel, “Mini-NOVA: A Lightweight
ARM-based Virtualization Microkernel Supporting Dynamic Partial Re-
configuration,” in Proc. 2015 IEEE International Parallel and Distributed
Processing Symposium Workshops, pp. 71–80, May 2015.

[9] S. Pinto et al., “Towards a lightweight embedded virtualization ar-
chitecture exploiting ARM TrustZone,” in Proc. 2014 IEEE Emerging
Technology and Factory Automation (ETFA), 2014.

[10] J. Martins, J. Alves, J. Cabral, A. Tavares, and S. Pinto, “µRTZVisor: a
Secure and Safe Real-Time Hypervisor,” Electronics, vol. 6, no. 4, 2017.

[11] S. Pinto, A. Tavares, and S. Montenegro, “Hypervisor for Real Time
Space Applications,” in Proc. The 4S Symposium, 2016.

[12] P. Garcia, et al., “On-chip message passing sub-system for embedded
inter-domain communication,” IEEE Computer Architecture Letters, vol.
15, no. 1, pp. 33–36, 2016.

[13] R. Wisniewski, G. Bazydlo, L. Gomes, and A. Costa, “Dynamic Partial
Reconfiguration of Concurrent Control Systems Implemented in FPGA
Devicesvai por,” IEEE Transactions on Industrial Informatics, vol. 13,
no. 4, pp. 1734-1741, 2017.

[14] M. Pagani, et al., “Towards Real-Time Operating Systems for Hetero-
geneous Reconfigurable Platforms,” OSPERT 2016, September 2016.

[15] T. Xia, J. Prévotet, and F. Nouvel, “An ARM-based Microkernel on
Reconfigurable Zynq-7000 Platform,” Mediterranean Telecommunication
Journal, vol. 5, no. 2, pp. 109–115, 2015.

[16] Xilinx (Oct. 20, 2017), Zynq-7000 All Programmable SoC (v1.12).
[Online]. Available: https://www.xilinx.com/support/documentation/
user guides/ug585-Zynq-7000-TRM.pdf. Accessed on: Nov. 28, 2017.

[17] Xilinx (May 6, 2014), Programming ARM TrustZone Architecture on
the Xilinx Zynq-7000 All Programmable SoC (v1.0). [Online]. Available:
https://www.xilinx.com/support/documentation/user guides/ug1019-zynq
-trustzone.pdf. Accessed on: Nov. 28, 2017.

[18] J. Winter, “Trusted computing building blocks for embedded linux-based
ARM trustzone platforms,” in Proc. 3rd ACM workshop on Scalable
trusted computing, pp. 21-30, 2008.

[19] N. Santos, H. Raj, S. Saroiu, and A. Wolman, “Using ARM trustzone to
build a trusted language runtime for mobile applications,” ACM SIGARCH
Computer Architecture News, vol. 42, no. 1, pp. 67-80, 2014.

[20] Xilinx (Apr. 5, 2017), Vivado Design Suite User Guide: Partial
Reconfiguration (v2017.1). [Online]. Available: https://www.xilinx.com/
support/documentation/sw manuals/xilinx2017 1/ug909-vivado-partial-
reconfiguration.pdf. Accessed on: Dec. 3, 2017.

[21] S. Liu, R. N. Pittman, and A. Forin, “Energy Reduction with Run-Time
Partial Reconfiguration,” in Proc. 18th annual ACM/SIGDA international
symposium on Field-Programmable Gate Arrays, 2010.


