
The industry-first secure IoT stack for RISC-V:
a research project

Sandro Pinto and Jose Martins
Centro ALGORITMI - Universidade do Minho
{sandro.pinto, jose.martins}@dei.uminho.pt

Abstract—This paper describes the first fully functional frame-
work for developing secure Internet-of-Things (IoT) systems on
RISC-V processors. The proposed horizontal software stack is
based exclusively on a number of open-source, commercial-grade
technologies readily available today. The bedrock of the system
is the Multizone Trusted Execution Environment (TEE), which
provides the infrastructure to execute multiple isolated zones,
communicating through a secure messaging infrastructure, and
other security primitives such as a secure boot. The remaining
components, each encapsulated in a different zone, include
(i) a modified, secure implementation of FreeRTOS, with full
support for user-mode interrupts, (ii) a TCP/IP stack (picoTCP)
complemented by a TLS library (wolfSSL), (iii) a minimalist root
of trust (RoT) implementation for key management, and (iv) a
command-line interface for overall system management. All the
developed components, including a modified version of SiFive’s
E300 platform, running on a Digilent ARTY 7 FPGA board, are
open-sourced under an Apache-2.0 license and freely available
on GitHub.

Index Terms—Secure stack, RISC-V, IoT, TEE, open-source.

I. INTRODUCTION

The modern technology landscape is finally arriving at the
longtime prophesied Internet-of-Things (IoT), where devices
from all ends of the spectrum, performing a myriad of func-
tions, and many times, managing safety-critical operations and
generating and handling vast amounts of sensitive data, are
connected to the Internet. As such, this new reality is not
only enriching our everyday lives but simultaneously creating
several new risks as shown by recent cybersecurity incidents.
For example, Mirai Botnet has clearly demonstrated that the
success of this new Internet era is heavily dependent upon the
trust and security built in these IoT devices [1].

In the last few decades, security through obscurity, the
approach followed by a majority of industry players, has been
proven time and time again to be ineffective. Therefore, as
pointed out as early as 1975 by Saltzer and Schroeder [2], a
paradigm shift towards open designs is a must. This principle,
embodied today in the Free and Open-Source Software (FOSS)
movement, stresses the fact that security mechanisms must not
rely on the secrecy of their inner-workings, which realistically
will not remain secret for widely deployed systems. Moreover,
it allows the system to be inspected by many reviewers and
makes it easier for a designer to directly evaluate whether
the system fulfills the security requirements for the intended
application. Although some would counterpoint that systems
such as Linux cannot be trusted since, despite following the
open-source approach, it still shows a large number of security

vulnerabilities, this is a consequence of its large, complex
and monolithic structure [3], not its open-source philosophy.
Horizontal, microkernel-based architectures which adhere to
the principles of minimality and of the least privilege, pro-
viding fine-grained encapsulation and fault-containment, are
inherently more secure, and therefore essential for developing
secure IoT systems.

In recent years, the open-source mindset has been making
its way towards hardware development. This has culminated
with the emergence of RISC-V which is experiencing rapid
adoption by both academia and industry. RISC-V is a free
instruction set architecture (ISA) based on the principles of
simplicity and openness. By following these principles, RISC-
V takes the first step to be a game-changer for hardware
security. Moreover, some of the features provided by the
architecture, besides the usual virtual memory and privilege
level mechanisms, further enhance this security focus. These
include, for example, the Physical Memory Protection (PMP)
mechanism and the user-level interrupt N extensions, which
are especially important to achieve thorough containerization
in low-end microcontrollers [4].

Taking all the above considerations in mind, in this paper,
we propose the first secure IoT stack for RISC-V systems,
based solely on the use of open-source components executing
on top of a minimalistic Trusted Execution Environment
(TEE).

II. SECURE IOT STACK

Fig. 1 depicts the implemented software stack for devel-
oping secure RISC-V IoT devices. The system runs on top
of a modified SiFive E300 which implements a RISC-V 32-
bit core with the machine and user modes (M- and U-mode)
and relies on the Multizone TEE to provide the infrastructure
to securely boot and execute multiple isolated zones. The
system is configured to run four independent zones which
implement the basic functional blocks typically present in
embedded connected devices, such as smart sensor nodes and
IoT endpoints in general. Zone 1 runs the industry-first RISC-
V secure implementation of the popular FreeRTOS, zone 2
runs a secure TCP/IP stack, zone 3 provides a minimalist root
of trust (RoT) for key management, and zone 4 runs a classic
command-line interface (CLI) for overall system management.
All zones are completely isolated and communicate through
well-defined message-based interfaces provided by the secure
InterZone Messenger. The full stack is based on open-source



Fig. 1: Secure IoT Stack Architecture for RISC-V

technologies and all developed components are open-sourced
under an Apache-2.0 license [5] - the remaining of this section
provides a glance over each system component.

A. Hardware Platform

The hardware platform is based on the open-source SiFive
Freedom E300 which, in turn, is based on a RISC-V 32-
bit core. The system on a chip (SoC) targets the low-cost
Arty FPGA board developed by Digilent. The Freedom E300
design was modified to include the Xilinx Ethernet Lite com-
ponent necessary to operate the Arty on-board ethernet port.
The SoC was also modified to add one-time programmable
(OTP) storage for the TLS certificates. Other notable hardware
enhancements include the addition of memory RAM up to 64
kB, the increase of the CPU frequency to 65 MHz, the addition
of a second privileged level (user mode), the support for core-
local interrupts, and the modification of the cache architecture
(4-way associative).

B. MultiZone TEE

MultiZone Security is the first TEE designed from the
ground up to leverage the hardware ”hooks” built into the stan-
dard RISC-V ISA. MultiZone Security provides signed boot
and segregates the various functional blocks into an unlim-
ited number of physically separated ”Zones”. The MultiZone
nanokernel is a lightweight, formally verifiable, bare metal
kernel providing policy-driven hardware-enforced separation
of resources (e.g., RAM, ROM, I/O, and interrupts). Inter-zone
communications are secured via the InterZone messenger,
which uses no shared memory. Finally, with the MultiZone
Configurator, the system designer defines read/write/execute
policies and maps various physical resources to each Zone.

C. Secure FreeRTOS

FreeRTOS is a popular and widespread RTOS among
academia and industry. Although enjoying widespread appli-
cability, FreeRTOS has been struggling in its own security
problems. To implement a secure version of FreeRTOS on
top of MultiZone, we de-privileged the OS to userland. While
MultiZone provides full support for trap and emulation (which
inherently requires no modifications), modifications were
mainly driven to address performance and security. Access
to privileged instructions was replaced by explicit and direct
calls (MultiZone API) to the nanokernel. Modifications were
implemented across five different OS subsystems: startup code,
task management, context switching, exception handling, and

time management. Among these modifications, we highlight
the implementation of full support for user-mode interrupts
[4]. On top of FreeRTOS runs three main threads (or tasks
in FreeRTOS terminology) which implement the application
logic for controlling a robotic arm, fading and blinking LEDs,
handling three buttons, and interfacing a CLI which is mainly
used to control the robot through the Internet.

D. Secure TCP/IP stack

Zone 2 provides network connectivity by implementing a
secure TCP/IP server. As the TCP/IP stack we opted for
the picoTCP due to its small footprint and modular imple-
mentation; moreover, picoTCP is actively being maintained
and the code is distributed under GPLv2 and GPLv3 license.
To ensure secure communication over the network we have
also added TLS through an embedded crypto library. For
the crypto library, we opted for wolfSSL which is the de-
facto open-source SSL/TLS library for resource-constrained
environments. wolfSSL was configured to support the latest
TLS protocol, i.e. the TLS v1.3.

E. Root of Trust

Zone 3 provides a minimalist implementation of a root of
trust which is based on an OTP memory that permanently
stores the certificates and keys to secure the TLS communi-
cation. By ensuring keys and certificates are isolated into a
dedicated zone, it allows applying hardware-enforced policies
to grant access to the certificates only from the TCP/IP server
zone.

F. Command-line Interface

Zone 4 implements the front-end of a classic command-
line interface. is accessed through a serial interface and aims
at providing an easy channel to manage and benchmark the
overall system’s functionalities and performance.

III. CONCLUSION

Open, secure-by-design approaches seem to be the most
viable aisle for truly developing secure IoT devices. Further-
more, large monolithic operating systems have shown to be in-
appropriate to serve as the foundation of these systems. In this
paper, we described our prototype of the first secure IoT stack
for RISC-V systems, solely based on open-source technology.
All the components execute on top of a microkernel-based
TEE which takes advantage of hardware features provided by
all RISC-V hardware.

REFERENCES

[1] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS in the IoT:
Mirai and Other Botnets,” Computer, vol. 50, no. 7, pp. 80–84, 2017.

[2] R. E. Smith, “A Contemporary Look at Saltzer and Schroeder’s 1975
Design Principles,” IEEE Security & Privacy, vol. 10, no. 6, pp. 20–25,
Nov 2012.

[3] S. Biggs, D. Lee, and G. Heiser, “The Jury Is In: Monolithic OS Design
Is Flawed,” in 9th Asia-Pacific Workshop on Systems, 2018.

[4] S. Pinto and C. Garlati, “User Mode Interrupts: A Must For Securing
Embedded Systems,” in Embedded World Conference, 2019.

[5] Hex-Five, “MultiZone Secure IoT Stack,” https://github.com/hex-five/
multizone-secure-iot-stack/, 2019, [Online; accessed 20-Feb-2019].


