
Virtualization on TrustZone-enabled
Microcontrollers? Voilà!

Sandro Pinto, Hugo Araujo, Daniel Oliveira, Jose Martins, Adriano Tavares
Centro ALGORITMI - Universidade do Minho

{sandro.pinto, hugo.araujo, daniel.oliveira, jose.martins, atavares}@dei.uminho.pt

Abstract—With predictions pointing to more than 20 billion
Internet-enabled ’things’ by 2020 and much more to come, smart
sensor nodes are expected to be predominant in the Internet of
Things (IoT) era. As these systems are connected to the Internet
and tend to implement an ever-growing number of mixed-
criticality features, there is huge pressure for strong isolation
to guarantee a reliable, secure, and predictable infrastructure.
While virtualization has been a game-changer for consolidation
and isolation in mid- to high-end embedded applications, for
low-end and low-cost systems it is still in its infancy, and
only a limited number of solutions have been proposed so far.
This work aims at developing a lightweight hypervisor which
provides strong isolation on resource-constrained devices. Our
approach leverages TrustZone technology available on modern
Arm microcontrollers (TrustZone-M) to implement a predictable
virtualization infrastructure for low-end and low-cost systems.
Experiments conducted on an Arm Musca-A multi-core platform
demonstrate our solution achieves low memory footprint, high
efficiency, and strict timing predictability.

Index Terms—Virtualization, TrustZone, Mixed-criticality, Iso-
lation, Microcontrollers, Multi-core, Real-time, Arm.

I. INTRODUCTION

With the advent of the Internet of Things (IoT), we are
witnessing a massive adoption of Internet-enabled ’things’ [1],
[2]. Gartner predicts that by 2020 there will be over 20 billion
connected devices [3], and Arm expects that a trillion new IoT
devices will be produced between 2017 and 2035 [2]. This
massive global network infrastructure represents a collection
of billions of smart, connected devices [4]. As these systems
are connected to the Internet, they are inherently exposed to an
endless number of security threats. Furthermore, as they tend
to consolidate multiple applications/environments originating
from different developers and aim at implementing an ever-
growing number of mixed-criticality features, there is huge
pressure for strong isolation to guarantee a reliable, secure,
and predictable infrastructure [4], [5].

In resource-constrained devices, the partitioning of mixed-
criticality systems has been mainly implemented through fed-
erated architectures [6]. This means there is a physical sepa-
ration of several subsystems spanned across different micro-
controllers (MCUs). However, since the number of functions is
increasing at a rapid pace and this trend is expected to continue
growing in the near future, federated architectures are becom-
ing impractical, due to size, weight, power, and cost (SWaP-
C) requirements [6], [7]. In such a scenario, widespread
virtualization technologies already used in high-end embedded
computing systems [8]–[10] also become paramount in low-

end and low-cost systems. Use-cases for MCU-based virtu-
alization range from the isolation of security- and safety-
critical functions from those that require less stringent control
(e.g., small Industrial IoT controllers), to the consolidation of
several applications onto fewer electronic control units (ECUs)
to manage complexity and reduce cost. So, the increasing
demand for MCU-based virtualization is leading academia [6],
[11], [12] and industry [13] to put significant effort into the
development of lightweight virtualization solutions.

Arm TrustZone is a hardware security-oriented technology
introduced into Cortex-A processors back in 2004 [14]. This
technology is centered around the concept of separating the
system execution into the secure and normal worlds. The
ubiquitous adoption of Arm-based processors in the embedded
market has made TrustZone as one of the most used key-
enabling technologies for enforcing trusted execution envi-
ronments (TEE) in mobile devices [14], [15]. The research
community has also been extremely active in exploring new
ways to leverage TrustZone for isolation, including the use of
TrustZone to implement an alternative and lightweight form
of system virtualization [16], [17].

TrustZone for MCUs (a.k.a. TrustZone-M) is a new en-
deavor [18]. At a high-level, this variant is similar to the
variant implemented in Cortex-A processors; however, at
a low-level, there are significant architectural differences
since the underlying mechanisms were re-designed from the
ground up and optimized for low-power applications. Although
TrustZone-M is mainly targeting use-cases for root of trust im-
plementation, security management, and firmware protection,
it is our belief that since TrustZone has enabled an alternative
form of system virtualization in high-end devices, TrustZone-
M will be a game-changer for low-end virtualization. However,
as of this writing, existing TrustZone-assisted hypervisors [16],
[17], [19] have no support for Armv8-M.

TrustZone-M is available in the new generation of Cortex-
M MCUs, i.e. the Cortex-M23 and the Cortex-M33. Among
existing TrustZone-M platforms, Arm Musca-A board is par-
ticularly interesting, due to the implementation of multi-core
technology in MCUs. Computing systems are progressively
moving towards multi-core platforms due to the proven ad-
vantages in terms of computing power and power consump-
tion. This trend is expected to continue in the near future,
and multi-core platforms are expected to become mainstream
even on low-end and low-cost systems. Although multi-core
technology brings several advantages, it also raises several

293

2019 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)

978-1-7281-0678-6/19/$31.00 ©2019 IEEE
DOI 10.1109/RTAS.2019.00032

challenges and difficulties deriving from the reciprocal inter-
ference caused by hardware resource sharing (e.g., memory
controllers, caches, buses) [5], [20]. This issue is particu-
larly relevant when the platform is deploying applications
with different criticalities. The real-time community has been
proposing several approaches to minimize contention and
improve predictability at the OS [21], [22] and hypervisor level
[7], [23], [24]. Nevertheless, to the best of our knowledge,
existing approaches focus on high-end platforms and depend
on hardware features (e.g., two-stage MMU and performance
counters) which are not typically available on MCUs.

Using TrustZone-M to implement virtualization is not
straightforward; there are a set of unsolved key challenges
which arise from the fact that the technology was redesigned
from the ground up, requiring a considerable effort in soft-
ware architectural redesign and implementation. Moreover,
correct partitioning of micro-architectural shared resources is
neglected by existing TrustZone-assisted hypervisor solutions.
In this paper, we begin by discussing the background on
TrustZone technology and TrustZone-assisted virtualization,
and then we focus on the paper’s contributions:

• The implementation of a TrustZone-M-assisted virtual-
ization infrastructure that provides strong isolation for
lightweight mixed-criticality systems (Section III). To
the best of our knowledge, this is the first hypervisor
supporting TrustZone-M technhology (Armv8-M).

• An analysis of a modern TrustZone-M-enabled multi-core
platform considering the main sources of unpredictability
and contention and a set of guidelines and design de-
cisions to improve determinism and predictability (Sec-
tion IV). To the best of our knowledge, none existing
TrustZone system has addressed it so far.

• Finally, an evaluation of the virtualization infrastructure
according to different dimensions and metrics, and focus-
ing on determinism and predictability (Section V).

II. BACKGROUND

In this section, we start by overviewing TrustZone and
TrustZone-M technologies (Section II-A). Then, we explain
the concept of TrustZone-assisted virtualization, and, finally,
we highlight the challenges for implementing a TrustZone-M-
assisted hypervisor (Section II-B).

A. Arm TrustZone

Arm TrustZone provides a system-wide hardware approach
to security. TrustZone was firstly introduced into Arm ap-
plication processors (Cortex-A) in 2004, and, recently, Arm
released TrustZone-M for the new generation of Arm MCUs
(Cortex-M) [14], [18] (Fig. 1). This technology is centered
around the concept of two hardware-enforced protection do-
mains. Each world is granted uneven privileges, with non-
secure software prevented from directly accessing secure
world resources. On Cortex-A processors, the current world
in which the processor runs is determined by the Non-
Secure (NS) bit. Furthermore, an extra privileged mode, named
secure monitor, is added to implement mechanisms to perform

Secure Monitor

Non-secure State

Hypervisor

Secure
OS

Non-Secure
(Rich) OS

Non-Secure
Apps

Secure
Apps/Lib

Secure State Non-secure State

Secure
OS

Non-Secure
OS

Non-Secure
Apps

Secure
Apps/Lib

Secure State

(a) TrustZone for Cortex-A

Non-secure State

Secure
OS

Non-Secure
OS

Non-Secure
Apps

Secure
Apps/Lib

Secure State

(b) TrustZone for Cortex-M

Fig. 1: TrustZone technology

a secure context switch between worlds. To enter monitor
mode there is a specific privileged instruction named Secure
Monitor Call (SMC). TrustZone allows system designers to
add a TrustZone Address Space Controller (TZASC) and a
TrustZone Protection Controller (TZPC), which allow memory
and devices to be configured as either secure or non-secure.
Isolation is also implemented at the cache-level. The Generic
Interrupt Controller (GIC) also supports the coexistence of
secure and non-secure interrupt sources.

TrustZone for MCUs (TrustZone-M). From a high-level
perspective, TrustZone for Armv8-M is similar to the variant
in Cortex-A processors. In both designs, the processor can
execute in either a secure or non-secure state. There are, how-
ever, important differences as Cortex-M has been optimized
for faster context switch and deterministic execution. As a
result, the underlying mechanisms of TrustZone-M are sig-
nificantly different from the original TrustZone specification.
In TrustZone-M the execution state is memory map based and
world crossings take place automatically in exception handling
code and special branching instructions (see Fig. 1). These
security states are orthogonal to the existing processor modes,
i.e., there is a Thread and Handler mode in both secure and
non-secure states. TrustZone-M excludes the monitor mode
and the need for any secure monitor software. This reduces
the world switch latency, resulting in more efficient transitions.
For bridging software between both worlds, TrustZone-M sup-
ports multiple secure function entry points. For this purpose,
the instruction set architecture (ISA) was extended with three
new instructions, including the secure gateway (SG). With the
exception of stack pointers and a few special registers, in
the Armv8-M architecture, most of the registers are shared
between secure and non-secure states. Regarding the memory
infrastructure, the physical address space is partitioned into
secure and non-secure sections. Additionally, in TrustZone-
M, the secure memory space is further divided into two types:
secure and non-secure callable (NSC). NSC is a special secure
memory location which is used to hold SG instructions; this
is the entry point of every explicit transition between non-
secure and secure states. The security state of memory can
be configured using the Secure Attribution Unit (SAU) or
the Implementation Defined Attribution Unit (IDAU). System
designers can use the IDAU to define a fixed memory map

294

and the SAU to override the security attributes for some
parts of the memory. The memory partitioning is also used to
configure peripherals as secure or non-secure. The TrustZone-
aware Memory Protection Unit (MPU) enables each world to
have a local set of memory access permissions by providing
a different MPU interface per world. The Nested Vectored
Interrupt Controller (NVIC) allows interrupts to be configured
as secure or non-secure. There are no restrictions regarding
whether a non-secure or secure interrupt can take place when
the processor is running non-secure or secure code. If the
arriving interrupt’s state is equal to the current execution
state, the exception sequence is similar to the previous M-
series processors. The main difference occurs when a non-
secure interrupt takes place and is handled by the processor
during the execution of secure code. In this case, the processor
automatically pushes all secure information onto the secure
stack and erases the contents from the register banks.

B. TrustZone-assisted virtualization

TrustZone technology enables a specialized, hardware-
assisted, form of system virtualization. With a virtual hardware
support for dual world execution, an extra processor mode
(i.e., the monitor mode), and other TrustZone features like
memory segmentation, it is possible to provide time and
spatial isolation between execution environments [16], [17],
[25]. Basically, the non-secure software runs inside a vir-
tual machine (VM) whose resources are completely managed
and controlled by a hypervisor running in the secure world.
TrustZone-assisted virtualization is not particularly considered
full-virtualization neither paravirtualization, because, although
guest OSes can run without modifications on the non-secure
world side, they need to interoperate to manage the us-
age of memory map and address space. TrustZone-assisted
virtualization solutions support mainly two types of system
configurations: dual-guest [16], [17] and multi-guest [26]. For
instance, in a dual-guest configuration, the hypervisor runs in
the monitor mode, and the secure and non-secure guest OSes
run in supervisor mode of the secure and non-secure states,
respectively. The VM running in the secure world is considered
privileged because in this world there is no isolation between
both supervisor and monitor modes. Among existing system
configurations, the majority of TrustZone-assisted hypervisors
follow a dual-OS approach, due to the perfect match between
the number of VMs and the number of protection domains
directly supported by the processor.

Challenges shifting to TrustZone-M-assisted virtualization.
Given the previously detailed differences between TrustZone
on Cortex-A and Cortex-M platforms, the existing TrustZone-
assisted hypervisors are not directly amenable to modern
Cortex-M processors. To make TrustZone-M-assisted virtual-
ization a reality, several key challenges need to be addressed:

• TrustZone technology for Armv8-M excludes the NS bit
and the privileged monitor mode; this requires a signifi-
cant re-design in the overall architecture since the monitor
mode is the CPU mode used for running the hypervisor

component of existing TrustZone-assisted virtualization
infrastructures.

• The ISA of TrustZone-M-enabled MCUs excludes the
SMC instruction; this requires the implementation of
a different mechanism to explicitly trigger transitions
between VMs.

• The TrustZone-M specification does not include a
TZASC nor a TZPC: this requires the implementation
of a different memory and device manager for correctly
partitioning memory and peripheral resources according
to the new security controllers (SAU and IDAU).

• The TrustZone-enabled NVIC does not provide FIQ in-
terrupts: this requires the implementation of a different
interrupt management mechanism for managing and han-
dling secure and non-secure interrupts.

III. TRUSTZONE-M HYPERVISOR

The TrustZone-M hypervisor was implemented target-
ing a dual-OS configuration. Comparing to existing classic
TrustZone-assisted solutions (e.g., SafeG [16] and LTZVisor
[17]), the main architectural difference is the adoption of a co-
allocated virtualization approach due to the non-existence of
the secure monitor mode. Even in this co-allocated approach,
the hypervisor is decoupled from the secure OS since we strive
to keep our virtualization infrastructure as much OS-agnostic
as possible. Furthermore, we decided to implement a from-
scratch solution because (i) TrustZone-assisted hypervisors are
characterized by a very small TCB which is very dependent on
the TrustZone specification and due to (ii) envisioned roadmap
and future activities which will be completely focused on
low-end devices. Fig. 2 depicts the implemented single-core
architecture and subsections III-A to III-D goes through the
implementation details (CPU virtualization, memory and de-
vice partitioning, and interrupt and time management) for such
configuration. In addition, given that TrustZone-M platforms
are also shifting towards multi-core, we have also extended
our implementation for an asymmetric multi-core (AMP)
configuration - subsection III-E discusses the implementation
details. Comparing the single-core to the AMP configuration,
while the former assume guests are multiplexed in one core,
the latter assumes guests run in parallel in different cores -
both were implemented and the system can be tuned at design
time according to the target platform.

A. CPU Virtualization

In essence, TrustZone technology virtualizes a physical core
as two virtual cores. Between both virtual cores, there is a list
of banked registers; this list encompasses the Stack Pointer
(SP), as well as the Control (CONTROL) and Exception/In-
terrupt Masking (PRIMASK, FAULTMASK, BASEPRI) reg-
isters. The remaining core registers are shared among the
secure and non-secure states. So, while implementing the
Virtual Machine Control Block (VMCB) we make sure to
include all general-purpose registers (R0-R12), along with the
Link Register (LR), Program Counter (PC), and Application,
Interrupt and Execution Program Status Registers. In the

295

S‐VM
(RTOS)

NS‐VM

(IoT‐OS/RTOS)

Hypervisor

Ta
sk
0

Ta
sk
1

Ta
sk
 (n

‐1
)

Ta
sk
2

RT
as
k0

RT
as
k1

RT
as
k (

n‐
1)

RT
as
k2

 P
riv

ile
ge
d

U
np

riv
.

S_Handler

SVC

NS_IRQ

S_IRQ
S_IRQ

NS_IRQ

TrustZone‐enable MCU

Fig. 2: TrustZone-M-assisted hypervisor (single-core)

single-core configuration, VMCBs are managed at every world
switch, and it is the sole responsibility of the secure software
to sanitize any sensitive information held in these registers.

We borrow the asymmetric scheduling policy from SafeG
[16] and LTZVisor [17]. So, the implemented scheduler en-
sures that the non-secure VM (NS-VM) is only scheduled
during the idle periods of the secure VM (S-VM), and that
the S-VM resumes its execution as soon as a secure IRQ is
triggered (Fig. 2). A transition from the S-VM to the NS-
VM is triggered by explicitly using an SVC exception. In
addition, we have fixed the layout of the VMCB according
to the stack frame defined by the Procedure Call Standard for
Arm Architecture (AAPCS). This ensures that the majority of
non-banked core registers are automatically (un)stacked by the
hardware itself, which significantly reduces the world switch
overhead.

B. Memory and Device Partition

In existing TrustZone-assisted virtualization solutions mem-
ory cannot be virtualized; instead, memory is partitioned (i.e.,
through the TZASC). As TrustZone controllers do not provide
virtualization of addresses, all VMs must be non-overlapping,
which means they need to cooperate on sharing a single
physical memory address space.

In the TrustZone-M architecture, memory virtualization
is already non-existent. Memory regions can be configured
and partitioned as secure or non-secure (or NSC) using a
programmable SAU. So, similarly to the TZASC, which
is a major requirement for TrustZone-assisted virtualization,
the SAU is a major requirement for TrustZone-M-assisted
virtualization. The difference is that while the TZASC is an
optional component on TrustZone specification, the SAU is
mandatory. Moreover, while TZASCs available on commercial
Armv7-A platforms have limited flexibility and granularity, we
noted that the SAU provides a configurable number of memory
regions (0, 4 or 8), which can be programmed at unlimited
granularity. So, to configure an SAU region, we needed to
configure the base (SAU RBAR) and limit (SAU LBAR)
addresses, as well as its security state. For example, on the
Arm Musca-A platform [27], the implemented IDAU defines
(when SAU is disabled) a memory map with consecutive and
alternated 256 MB secure and non-secure memory regions
(Fig. 3a). In contrast, Fig. 3b depicts how we have configured

0x0000_0000

0x2000_0000

Reserved

0x4000_0000

0x6000_0000

0xFFFF_FFFF

SRA
M

 B
an

ks
Q

S
P

I F
lash

(C
ode)

0x1000_0000

Internal
SR

A
M0x3000_0000

P
eriph

eral

S NS

Reserved

SAU_CTRL.ENABLE=0

Region0 0x0022_0000
0x0024_0000

0x2001_0000
0x2002_0000

Region1

In
te

rn
a

l
S

R
A

M

Region2

P
e

rip
h

e
ra

l

0x4000_0000

0x5000_0000

SAU_CTRL.ENABLE=1

S
R

A
M

 B
an

ks
Q

SPI Flash
(C

o
d

e
)

Fig. 3: Memory map with a) SAU disable and b) SAU enable.

the SAU to set three non-secure memory regions (common
memory layout - see Table II): Region0 in the QSPI Flash
(code), Region1 in an internal SRAM (data), and Region2 in
the Peripheral area. NSC entry points are not explored in the
current implementation since the transition from the NS-VM to
the S-VM goes through a single entry point: a secure interrupt.
NSC regions may be explored in the near future to implement
inter-VM communication.

While in Cortex-A processors two independent TrustZone
controllers exist to configure memory and devices, in
TrustZone-enabled MCUs the security state of memory and de-
vices is configured exclusively through the SAU (and comple-
mentary platform-specific TrustZone protection controllers).
Our current implementation supports pass-through device vir-
tualization. This means devices are statically assigned and
directly managed by guest OSes. So, memory-mapped devices
assigned to the S-VM are configured as secure, while devices
assigned to the NS-VM are configured as non-secure.

C. Interrupt Management

In Cortex-M MCUs interrupt management is particularly
different than in Cortex-A processors because the TrustZone-
enabled NVIC just supports classic interrupt requests (IRQs).
Notwithstanding, it is possible to configure IRQs as secure
or non-secure, by adequately configuring the NVIC ITNS
register. There are no restrictions regarding whether a non-
secure or secure interrupt can occur when the processor is
in the secure or non-secure state. This means, in TrustZone-
M, it is possible for a non-secure interrupt to preempt the
execution of the S-VM (Fig. 1b). However, to keep with
the asymmetric design principle, while avoiding any kind of
denial-of-service (DoS) attack from the NS-VM to the S-VM,
non-secure IRQs are configured to have a lower priority than
secure interrupts and are disabled (through the PRIMASK NS
register) while the S-VM is running. Moreover, while the NS-
VM is running, it has not granted rights to change the security
state of interrupts. Any attempt, from the NS-VM, to change
any secure NVIC register will have no effect, and any attempt
from the NS-VM to redirect an interrupt source to a secure
interrupt handler will be trapped to the hypervisor.

296

Although the TrustZone-enabled NVIC has limited config-
uration flexibility when compared to the TrustZone-enabled
GIC, the Vector Table Relocation (VTR) feature opens the
opportunity to modify the location of the exception vector
at run-time. The Vector Table Offset Register (VTOR) is a
banked register that indicates the offset of the vector table
base address. Since a different register exists per world, VTOR
enables the existence of a vector table per VM. So, each VM
is able to independently handle its own interrupts, without
any hypervisor interference (Fig. 2). Hypervisor indirection
just occurs when the NS-VM is running and a secure IRQ
is triggered. For the S-VM, we have implemented two secure
vector tables: (i) an active secure vector table and (ii) a passive
secure vector table. The former is used when the S-VM is
active, and all interrupts and exceptions are directly handled
by the S-VM - except the Supervisor Call (SVC), which is
handled by the hypervisor. The latter is used when the S-VM
is idle, and all secure interrupts and exceptions which might
happen need to be mediated through the hypervisor (Fig. 2).
The secure VTOR register is updated between the active and
passive vector table at every world switch.

D. Time Management

Temporal isolation is a mandatory requirement for virtu-
alization, which is typically achieved using a hierarchical
scheduling and timing strategy: both at the hypervisor and
guest level [28], [29]. Our hypervisor implements a very
specific time management strategy. It leverages the timing
facilities available on TrustZone-enabled MCUs to allow VMs
direct access to timekeeping mechanisms without any hypervi-
sor interference. In all TrustZone-M-enabled MCUs, a 24-bit
system timer (SysTick) exists per world. So, for a dual-OS
configuration, it is possible to directly assign an independent
timing unit per VM. This, altogether with the asymmetric
design principle, ensures the SysTick dedicated to the S-VM
has higher privilege than the timing unit dedicated to the
NS-VM. While this approach ensures that the S-VM keeps
track of the real passing of time (not missing any interrupt)
independently on the time management strategy at the OS
level (tick-driven or tickless), this is not necessarily true (in a
single-core configuration) for the NS-VM. If we assume that
the NS-VM, as a tick-driven OS, has a tick rate small enough
that cannot be handled under the idle periods of the S-VM,
then we will definitely lose track of the real passing of time.
Unfortunately, the Armv8-M architecture does not provide
any mechanism for directly injecting missing interrupts. So,
in this case, we have to make one of two assumptions: (i)
the guest OS running in the NS-VM implements a tickless
strategy based on wall-clock time, or (ii) the workload of the
secure real-time environment is known at design time and the
system designer ensures idle periods are enough to handle the
non-secure SysTick interrupt. In any case, when transitioning
from a single-core to a multi-core approach (Section III-E) the
majority of timing limitations are intrinsically overcome.

Non‐Secure Non‐SecureSecure

CPU0
(Cortex‐M33)

CPU1
(Cortex‐M33)

S‐VM
(RTOS) NS‐VM

(IoT‐OS)

SSE‐200

MASTER
Hypervisor

Ta
sk
0

Ta
sk
 (n

‐1
)

RT
as
k0

RT
as
k (

n‐
1)

Pr
iv
ile
ge
d

U
np

riv
ile
ge
d Secure

SLAVE
Hypervisor

Fig. 4: Asymmetric multi-core system architecture (AMP).

E. AMP Configuration

Fig. 4 depicts the implemented AMP architecture featuring
the Arm Musca-A platform (see Appendix A). As presented
in Fig. 4, in the AMP configuration each VM is pinned to
a specific core: the S-VM is assigned to the main processor
(CPU0), while the NS-VM is assigned to the secondary core
(CPU1). The hypervisor is split into two parts: the master
runs in the CPU0 while the slave runs in the CPU1. In
the AMP configuration, the role of the hypervisor during
runtime is almost null (unless inter-VM communication is
implemented). This is due to the fact there is a one-to-one
mapping between the number of guests, the number of cores,
and the number of virtual states supported by the cores. The
majority of hypervisor-related operations are performed at boot
time. Since each Cortex-M33 runs its own VM OS instance, no
scheduling points and world switch operations are performed.
The master hypervisor is only responsible for partitioning the
system at start-up by adequately configuring the security state
of the several resources. It is responsible for configuring the
SAU and the NVIC to partition memory and interrupts as
secure and non-secure, respectively, as well as for creating
both secure and non-secure VMs. It is then responsible for
kicking the secondary CPU and starting the slave hypervisor.
While in TrustZone-enabled Cortex-A processors the TZASC
is shared among all cores in a SoC, in TrustZone-enabled
MCUs there is an SAU per core. So, the slave hypervisor
is also responsible for configuring the SAU and the NVIC of
the secondary core according to the same security model of
the master. After initializations, the slave hypervisor starts the
execution of the NS-VM, by explicitly triggering an SVC.

F. Scalability

Although our current implementation does not provide sup-
port for multiple guests, according to our previous experience
[26], [30], existing TrustZone hardware resources available
on Armv8-M MCUs make it also possible to implement
multi-guest support. The implementation of such support will
overcome the main limitation of the classic TrustZone model
(split all code bases into only two worlds), and bring several
benefits in terms of isolation and flexibility for the current
and upcoming needs of embedded and IoT devices. We plan

297

to implement an architecture where the hypervisor executes
standalone in the secure privileged mode, while the multiple
guests can be split between running on the normal world
and preserved and isolated on the secure world. As a result,
shared resources need to be managed and re-configured by
the hypervisor. Notwithstanding, the SAU enables the re-
configuration of the security state of memory and devices at
runtime (with higher flexibility than the TZASC), as well as
the NVIC enables the re-configuration of the security state of
interrupts also at runtime. Reconfiguration of the security state
of memory, devices, and interrupts is the main requirement
for implementing multi-guest support in TrustZone-assisted
virtualization infrastructures. Moreover, by adopting such an
approach, we will also be able to solve the lack of isolation ex-
isting between the secure co-allocated components and shrink
the TCB of the system to the size of the hypervisor. While
scalability in terms of the number of guests seems to perfectly
fit in a single-core approach, this is not necessarily true for a
multi-core configuration. For multi-core platforms, we believe
only a true synergy between TrustZone and paravirtualization
will bring real scalability.

IV. PREDICTABLE SHARED RESOURCES MANAGEMENT

Embedded virtualization has several proven benefits but
still faces serious challenges, specially when real-time is a
concern. On one hand, it already provides a reasonably high
degree of time and space encapsulation and isolation of VMs
by time-multiplexing resources such as the CPU, partitioning
memory, and assigning or emulating devices. On the other
hand, partitioning and multiplexing of micro-architectural
shared system resources were, until recently, neglected by
most hypervisors. This led to contention and lack of truly
temporal isolation, hurting determinism by increasing jitter
[7], [31]. Also, this can be explored by a malicious VM
to implement DoS attacks by increasing their consumption
of a shared resource. Moreover, it allows for the existence
of timing side-channels compromising data confidentiality,
which might be exploited to access private or sensitive data
of either a VM or the hypervisor [31], [32]. Although AMP
hypervisors with VMs pinned to dedicated cores already re-
move part of this contention when compared to single-core or
symmetric multiprocessing (SMP) implementations, system-
wide resources such as last-level caches (LLCs), memory
controllers, and interconnects still remain shared and subject
to contention. This is further aggravated as mechanisms such
as cache replacement, cache coherency, hardware prefetching
or memory controller scheduling focus mainly on performance
and bandwidth maximization.

Many approaches, from which we highlight cache coloring
[23], [33], memory bandwidth reservations [24], or both
[7] have already been applied to mitigate these issues with
promising results. However, these techniques depend on the
existence of memory virtualization infrastructure or perfor-
mance monitoring features which are not available on MCUs.
On the positive side, many of these contention points, such as
data caches or TLBs, are seldom, if ever, featured in low-end

platforms, and the absence of memory translation mechanisms
or deep cache hierarchies further reduces the sources of inde-
terminism. From another perspective, and as detailed in [34],
commercial MPSoCs exhibit a high degree of heterogeneity
regarding their memory subsystem which is comprised of a
rich set of different types of memory (e.g. DRAM, SRAM,
QSPI Flash, etc.), each accessed through different bus paths
and memory controllers, providing varying degrees of latency
and bandwidth guarantees. Although this study focused on a
high-end Cortex-A platform, this heterogeneity is also true and
even more pronounced in modern MCU-based platforms.

Taking these ideas and insights in mind, we believe that it
is possible to achieve a high degree of determinism on MCU
AMP virtualization, through an informed and thoughtful layout
of VM memory. This is accomplished by distributing data and
code segments from different VMs through different memory
elements, each with dedicated controllers accessed via bus
paths which enable fully concurrent accesses or assigned in
such a way that minimizes contention.

A. The Arm Musca-A Memory Subsystem

Arm Musca-A test chip [27] is a TrustZone-enabled plat-
form targeting secure IoT designs and intended as a refer-
ence implementation for other SoCs using the same core IP.
Therefore, despite the fact that, at the time of writing of
this paper, the number of TrustZone-M-enabled platforms is
relatively small, we believe that the analysis provided through-
out this section will be valid and span across many other
platforms. According to its block diagram (Fig. 9), the Musca-
A encompasses the CoreLink SSE-200 subsystem featuring an
asymmetric dual-core Cortex-M33, each with a private 2KB
instruction cache and no data caches. The asymmetry of the
design has a direct relation to the performance of the CPU,
i.e., when running both CPUs at the same frequency, CPU1 is
inherently slower than CPU0 (see Appendix C). The cores are
connected to the main bus matrix, a multi-layer AHB5 inter-
connect, that enables parallel access paths between multiple
masters and slaves in the system. A set of four 32KB internal
SRAM (iSRAM) elements is also accessible via this main bus.
Each of them features a dedicated controller and are therefore
considered separate slaves on the bus. Consequently, when
each of these memory elements is assigned exclusively to
each CPU, it results in no contention. Although both cores can
access any of these memory elements, Musca’s documentation
details that SRAM element 3 is a tightly coupled memory
(TCM) to CPU1’s data port. In contact with Arm support, we
unveiled that the remaining SRAM elements are also TCMs
coupled to CPU0. This uneven coupling further increases the
asymmetry of the design. Still, as part of the SSE-200, the
main bus connects two slave AHB2APB bus bridges which
allow access to system control registers and peripherals.

Finally, in Musca-A, two expansion ports extend the SSE-
200 AHB bus matrix: one connecting a set of APB slaves
encompassing I/O functionality while the other connects two
memory elements targeted only to code storage and execution.
The first is a 2MB code external SRAM (eSRAM) clocked at

298

the same frequency as CPU0. Using this code eSRAM for
storing data is possible but impractical, as it does not support
unaligned accesses. The second is a QPSI controller connected
to an external QSPI 8MB boot flash memory, clocked at
a much lower frequency than both CPUs. The instruction
caches only cache addresses where these two memories are
mapped. Although each element is accessed through distinct
controllers, as explained before, they are connected to the main
bus through a single expansion port for the code memory
region, which prevents full concurrency when each of them
is assigned to a different CPU.

B. Contention-Aware Memory Layout

The previous Musca-A chip’s memory subsystem and inter-
connect analysis, supported by a set of empirical observations
(see Section V-C) allows us to come up with a memory
layout, which is intended to minimize contention of shared
resources. Targeting the AMP configuration (Section III-E)
and prioritizing the S-VM (RTOS) running on CPU0, we start
with an idealistic layout scenario and iteratively rearrange it
until all VMs’ memory is allocated.

For very low memory footprint systems, all code and data
for both VMs would completely fit in iSRAM, resulting in
no contention (see Fig. 10a in Appendix B). In this case, we
start by assigning iSRAM0 to S-VM and iSRAM3 to NS-
VM, given their tightly coupled nature, and distributing the
remaining SRAM elements according to each VM memory
needs, maintaining the invariant that each one is exclusively
assigned to a single VM. As a FreeRTOS image compiled
with only a small toy application amounts to about 25KB,
this would only be feasible when only minimal functionality
was included in each VM. In a more realistic setting, there is
the need to offload code segments to the external memories.
If possible, we maintain one of the VMs full images in the
iSRAM and migrate the other’s code to the eSRAM. If not,
we migrate both. This layout, where VMs share eSRAM for
code segments, and each has dedicated iSRAM elements for
data, constitutes the best option for real use cases (see Fig.
10b). At first sight, assigning one of the VMs to QSPI flash
would minimize contention as there would be no sharing of
a controller (see Fig. 10c). However, sharing eSRAM results
in better performance and less contention, given that QSPI is
clocked at a much lower frequency. Our observations show
that when a core is accessing this memory, on a concurrent
request, the latter will be stalled for a longer period until the
former is served, as the bus expansion port is also shared.
We believe that the eSRAM’s 2MB will suffice for hosting
both VMs’ code. If not, we shall place the NS-VM, or even
partially the S-VM, in QSPI. This results in the worst scenario
regarding both performance and contention (see Fig. 10d).
Note that the impact of moving both code segments to the
external memories, despite sharing the same bus expansion
master port or the same controller, will not greatly increase
contention when good code locality is present, as we as-
sume that instruction caches will always be enabled in both
cores. This is not guaranteed, however, since a compromised

OS running on NS-VM (CPU1) could disable caches and
increase contention on the bus expansion connected to the
code memories. Although in the Musca-A platform, the non-
secure software cannot access the cache control register, this
continues to be true, as it can execute in such a way that
continuously thrashes cache lines.

We are aware that this is an ad hoc approach that requires
burdensome analysis of the platform memory subsystem and
error-prone manual modifications to each VM linker script.
Therefore, is not easily applied to a different target. We
envision a tool that from available platform models and a
description of the VMs requirements automates the whole
process. Also, this allocation scheme does not contemplate
peripheral assignment, which might result in contention if
different peripherals on the same APB are assigned to each
VM. This is out of the scope of this paper and it will be
explored in future works.

V. EVALUATION

The evaluation was conducted on an Arm Musca-A Test
Chip Board running both cores at 50 MHz. We evaluate the
system for both single- and multi-core (AMP) configurations.
FreeRTOS (version 9.0.0) was used as the guest OS for both
secure and non-secure VMs. The hypervisor and both VMs
were compiled using the GNU Arm Embedded Toolchain
(version 7-2017-q4-major), with -Os optimizations (in Section
V-C -O0 were used as well). Our evaluation focused on perfor-
mance, interrupt latency, and contention. Section V-A focuses
on performance; we aim at assessing the runtime overhead
imposed by the hypervisor on the VM execution. Section
V-B evaluates the interrupt latency in order to understand the
additional jitter, at the VM level, caused by the underlying
infrastructure. Finally, Section V-C evaluates contention; we
aim at understanding how the system memory layout can
lead the NS-VM to create contention on shared buses and
consequently affect the timing predictability of the S-VM.

A. Performance Overhead

To assess the performance overhead introduced by the hy-
pervisor, we ran the Thread-Metric benchmarks. The Thread-
Metric Benchmark Suite [35] is an open-source, vendor-
neutral, free benchmark suite that measures RTOS perfor-
mance. The suite comprises 7 benchmarks, evaluating the
most common RTOS services and interrupt processing; each
benchmark outputs a counter value, representing the RTOS
impact on the running application - higher scores correspond
to a smaller impact.

We ran the seven benchmarks for three different system
configurations, presented in Table I. First, we evaluated the
system in a native environment, i.e., by running FreeRTOS
directly on top of CPU0. Then, we evaluated the virtualized
single- and multi-core configurations; for both configurations,
we evaluated the system from two different perspectives: the
S-VM and the NS-VM. For the single-core configuration, this
means both VMs share the same CPU (i.e., CPU0); for the
multi-core configuration, both VMs run in parallel on different

299

CPU0 CPU1
System Configuration Secure Non-Secure Secure Non-Secure

Native N • ◦ × ×

Single-core S-VM • ◦ × ×NS-VM ı •

Multi-core AMP S-VM • ◦ ◦ ı
AMP NS-VM ı ◦ ◦ •

TABLE I: System configurations under evaluation. Symbols
indicate whether the system runs (•) or does not run (◦) in
a specific security state of a particular CPU, or the CPU is
non-existent (×); the (ı) symbol indicates that the twin VM
(which runs in a different security state) is idle.

CPUs: the AMP S-VM runs in CPU0 while the AMP NS-
VM runs in CPU1. When running the benchmark in one VM,
the other VM is idle but the SysTick is kept active, i.e. the
FreeRTOS scheduler will still be triggered periodically, and the
idle task will execute minimal memory management services
before yielding execution. For the first part of the experiments,
the SysTick of all VM OS instances was configured with
a period of 1ms. Finally, we allocated the memory map so
that the code of both VMs are loaded into the eSRAM and
the respective data into different iSRAMs (common memory
layout - see Table II).

Fig. 5 presents the achieved results, where each bar shows
the average relative performance of 10000 collected samples
(each sample reflects 30 seconds of execution). The values on
top of the bars show the average absolute performance, i.e. the
average value of the output counter for the benchmark. As it
can be seen, for the single-core configuration, the S-VM has
no performance penalty (asymmetric design principle), while
the NS-VM presents, on average, a performance degradation
of about 0.6%. This performance degradation is the result of
the periodic preemption imposed by the S-VM, i.e. is the over-
head for getting S-VM in context every millisecond. Finally,
regarding the AMP configuration, there are two notes worth
mentioning. First, the AMP S-VM, although running without
any hypervisor interference, presents a small performance
degradation when compared to native execution, which varies
across the different benchmarks. This degradation is related
to contention on shared resources, which will be discussed in
detail in Section V-C. Second, the AMP NS-VM performance
is significantly reduced. This is not related to the virtualization
overhead, but mainly due to the execution of the NS-VM on
the secondary core (CPU1) which is inherently slower when
running at the base frequency (i.e., 50 MHz). A comparison
between a native execution of FreeRTOS on CPU0 and CPU1
demonstrated a decrease of performance on the same order of
magnitude (see Appendix C).

S-VM Systick overhead. In the second part of the experiments,
we focus on evaluating the correlation between the SysTick
rate of one VM and the performance overhead of the other
VM. We have repeated the previous experiments for three
different SysTick rates ranging from 1ms to 100µs. Each point
corresponds to the geometric mean of the collected samples
for the seven benchmarks, encompassing a total of 70000

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CS IPP IP MA MP PS SP

Native S-VM NS-VM AMP S-VM AMP NS-VM

13114210 2495929 3929887 4482182 3991690 3292683 4829934

99,0%

99,2%

99,4%

99,6%

99,8%

100,0%

Fig. 5: Performance for Thread-Metric benchmarks: coopera-
tive context switching (CS), interrupt processing with preemp-
tion (IPP), interrupt processing (IP), memory allocation and
deallocation (MA), message passing (MP), preemptive context
switching (PS), and semaphore processing (SP).

24%
26%
28%
30%
32%
34%90%

92%
94%
96%
98%

100%

1 0,5 0,2 0,1

SysTick (milliseconds)

R
el

at
iv

e
Pe

rf
o

rm
an

ce

NS-VM AMP S-VM AMP NS-VM

Fig. 6: Relative performance for different SysTick rates

samples per point. From Fig. 6 we can conclude that (i) in
the single-core configuration the performance of the NS-VM
decreases as the SysTick rate of the S-VM increases while (ii)
in the AMP configuration the performance of each VM slightly
decreases as the SysTick rate of the other VM increases.
Although this phenomenon is not noticeable in Fig. 6, we
observed a performance degradation of about 0.15%. Further
analysis must be carried out to fully justify that the decrease
of performance is not directly related to SysTick itself, but it
is instead a consequence of concurrency while stressing buses
when the FreeRTOS goes through the scheduler. The scheduler
needs to go through several critical internal data structures
(e.g., task and synchronization control blocks) while following
different execution paths (e.g., affecting code locality).

Starvation. The asymmetric design principal (single-core con-
figuration), borrowed from SafeG and LTZVisor, ensures that
the S-VM has a greater scheduling priority than the NS-VM.
While this ensures the timing requirements of the (secure) real-
time environment remain nearly intact, it also gives rise to star-
vation of the NS-VM. We have repeated the aforementioned
experiments, but using different workloads. We added one real-
time task to the FreeRTOS instance running as S-VM, as a way
of emulating different workloads on the S-VM. Four different
workloads were emulated with utilizations of 0, 25, 50 and
75%. FreeRTOS running as S-VM has the SysTick configured
to trigger every millisecond. This means the real-time task will

300

be consuming the CPU for 0, 250, 500 and 750 microseconds,
respectively. According to our experiments, we concluded that
in the single-core configuration the performance of the NS-
VM decreases linearly as the workload increases. In the worst
case, it will lead to a complete starvation of the NS-VM,
in case the S-VM never releases the CPU. For the AMP
configuration, starvation is completely overcome, and there
is only a slight performance decrease which is related to
contention (see Section V-C).

B. Interrupt latency

Interrupt latency, which can be defined as the time from the
moment an interrupt is triggered until the moment the handler
starts to execute, is a critical metric for real-time systems.
To assess the interrupt latency, we set up a dedicated timer
to trigger an interrupt every 10 ms, while guaranteeing this
is enough time for the interrupt to be serviced and resume
previous execution. As the timer is configured in incrementing,
auto-reload mode, latency is obtained directly by reading the
counter register at the beginning of the interrupt handler. We
measured the interrupt latency for the system configurations
presented in Table I. For the single-core configuration, we took
into consideration the best and the worst case scenarios, i.e.
when an interrupt is directly handled by the VM, as well as
when it is mediated by the hypervisor. For example, for the
S-VM, we measured the interrupt latency when an interrupt is
triggered while the S-VM is running, as well as while the NS-
VM is running (i.e., a world switch needs to be performed).
All measurements were repeated 10000 times. Fig. 7 shows
the assessed results, which expresses the best- and the worst-
case execution time (WCET). According to our experiments
and results, it is clear the additional overhead introduced in
a single-core configuration. This is perfectly understandable
as both VMs necessarily need to share the same CPU, which
requires an additional world switch. Notwithstanding, while
for the S-VM the WCET has a well-defined upper bound, for
NS-VM this is not necessarily true. The lemniscate symbol
on top of the bar means the NS-VM interrupt latency, on
the WCET, has no specific upper bound, due to the possible
starvation imposed by the S-VM. Notwithstanding, we are
perfectly aware of this limitation, and this is why we only
envision the usage of a soft real-time or IoT-enabled OS as
NS-VM. Regarding the test cases for the AMP configuration,
each VM always directly handles its own interrupts without
any hypervisor interference. However, we highlight two obser-
vations that deserve an explanation: first, the additional jitter
on both cases is mainly explained by concurrency on memory
and buses; and second, the increased value for the AMP NS-
VM is related to the fact the VM is executed on the CPU1,
which is inherently slower than CPU0.

C. Contention

Finally, in the last part of our experiments, we focused
on evaluating contention. As such, we focused on the AMP
configuration and consequently on observing how the S-VM
timing predictability may be hampered by NS-VM execution.

340 340 340 340
720

2000

500

850

0

400

800

1200

1600

2000

Native S-VM NS-VM AMP S-VM AMP NS-VM

Ti
m

e
(n

s)

WCET

Fig. 7: Interrupt Latency

System Configuration iSRAM0-2 iSRAM3 eSRAM QSPI

Pessimistic
S-VM data • - - -

code - - - •

NS-VM data • - - -
code - - - •

Random
S-VM data • - - -

code - - • -

NS-VM data - • - -
code - - - •

Common
S-VM data • - - -

code - - • -

NS-VM data - • - -
code - - • -

Optimistic
S-VM data • - - -

code • - - -

NS-VM data - • - -
code - - • -

TABLE II: System configurations used to evaluate contention.
Symbols indicate whether a memory is used (•) or not (−).

To evaluate such interference we set four system configura-
tions with different memory layouts. System configurations
are summarized in TABLE II. In a pessimistic memory layout
(P) the system is configured to stress concurrency, by running
the code of both VMs from the QSPI, and data from the
same iSRAM element. In a random memory layout (R), the
system designer has no concerns regarding the memory map;
so, the code related to the S-VM and NS-VM runs from the
eSRAM and QSPI, respectively, while the data is placed in
different iSRAMs. In a common memory layout (C) both
VMs are loaded into the eSRAM and respective data into
different iSRAMs (memory layout used in all aforementioned
experiments). Finally, in an optimistic scenario (O) code and
data of the S-VM are small enough to fit within a single
tightly coupled iSRAM, and the code and data of the NS-
VM are placed on the eSRAM and a tightly coupled iSRAM,
respectively. This scenario is similar to the ideal one men-
tioned in Section IV-B (and illustrated Fig. 10a as well) since
the S-VM is still completely isolated; however, it is a bit
more realistic, as non-trusted VM code does not also need
to completely fit in the single 32KB iSRAM element tightly
coupled to CPU1. In all test cases scenarios, the hypervisor
runs from the same memory as the S-VM. The S-VM is
running the Thread-Metric basic processing benchmark while
the NS-VM runs the FreeRTOS configured without any task.
Contention may result from the interference of NS-VM in
accessing memory while running the idle task and internal
scheduling-related services. Moreover, on CPU1 (which is
running the NS-VM) the instruction cache is disabled as a
way to maximize contention.

301

9
9

6
2

2

2
7

8
3

3

1
2

5
0

1
3

3
9

2
8

4

1
3

2
4

7
2

4
4

0
3

8

1
1

2
4

1
7

5
0

3
6

0

126845 39910 132811 44235

132811 44235 112417 50360

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

P (-O2) P (-O0) R (-O2) R (-O0) C (-O2) C (-O0) O (-O2) O (-O0)

CPU1 Off

99%

100%

Fig. 8: S-VM performance (Thread-Metric basic processing
benchmark) with and without NS-VM interference for differ-
ent memory layouts. Values on top and inside the bars shows
the maximum and minimum output score of the benchmark.

Fig. 8 presents achieved results. Each bar shows the best and
WCET, i.e. when the CPU1 (NS-VM) is enabled and disabled.
We have collected 10000 samples per test per bar. From
Fig. 8 we can conclude that for the pessimistic and random
memory layout there is significant interference from the NS-
VM on the S-VM. The NS-VM is able to add a considerable
interference, which results in a lack of determinism and
timing predictability. In contrast, when the memory layout is
distributed according to the guidelines proposed in Section
IV-B, the S-VM suffers none or really small interference
(common and optimistic system configuration, respectively)
from the NS-VM. Furthermore, we can conclude that the
higher are the compilation optimizations, the smaller is the
contention. This is related to the reduction in the number of
memory access instructions. Finally, it is worth mentioning we
have repeated the experiments related to the interrupt latency
for these four system configurations, and we have observed
the interrupt latency follows a similar pattern as the measured
performance. For example, for an optimistic memory layout,
the jitter on the S-VM interrupt latency is also non-existent.

VI. RELATED WORK

There is a rich body of hypervisor solutions, mainly due
to the large spectrum of use cases for virtualization [8],
[36]. While classical virtualization was mainly implemented
through trap-and-emulation, paravirtualization, and binary
translation techniques [37], [38], the advances on hardware
support for virtualization brought to light a set of efficient
hardware-assisted solutions [9], [10], [39], [40]. Due to the
extensive list of works on the virtualization landscape, we will
focus on the two following classes of existing solutions.

TrustZone-assisted hypervisors. The idea of using TrustZone
technology to implement hardware-assisted virtualization so-
lutions for (real-time) embedded systems applications is not
new. Frenzel et al. [25] pioneered research in this domain
by proposing the use of TrustZone for implementing the
Nizza secure architecture [41]. SafeG [16], SASP [19], and
LTZvisor [17] are dual-OS solutions which take advantage

of TrustZone extensions for virtualization. SafeG [16] is an
open-source solution which allows the consolidation of two
different execution environments: an RTOS such as TOPPERS
ASP kernel, and a GPOS such as Linux or Android. SASP
[19] implements a lightweight virtualization approach which
explores TrustZone technology to provide isolation between
a control system and an in-vehicle infotainment (IVI) sys-
tem. LTZVisor [17] is an open-source lightweight TrustZone-
assisted hypervisor mainly targeting the consolidation of
mixed-criticality systems. VOSYSmonitor [42] is a closed-
source product developed and maintained by Virtual Open
Systems. While the lack of scalability was the main reason
that led several researchers to perceive TrustZone as an ill-
guided virtualization technique for many years, RTZVisor [26]
and µRTZVisor [30] have recently demonstrated how multiple
OS instances are able to coexist, completely isolated from
each other, on TrustZone-enabled platforms. To the best of our
knowledge, all aforementioned works do no support Armv8-M
- they are implemented in Cortex-A processors and targeting
mid- to high-end applications.

Low-end hardware-enforced separation. While classical ap-
proaches which provide isolation in resource-constrained sys-
tems rely on constructive (language/compiler-based) memory
protection [43], [44], several embedded OSes focus instead
on hardware-tailored protection mechanisms by taking ad-
vantage of MPU facilities [43], [45]. These systems provide
increased reliability, but not necessarily ensure strong isolation
for mixed-criticality. Virtualization for low-end and low-cost
devices is in its infancy, and only a few solutions have been
proposed so far. F. Paci et al. [11] proposed a lightweight
I/O virtualization solution for MCUs by integrating MPU
support on FreeRTOS and implementing a specific task which
mediates all other tasks I/O accesses. Additionally, both F.
Bruns et al. [6] and R. Pan et al. [12] have proposed interesting
virtualization infrastructures on MPU-based MCUs which are
able to support strong isolation along the CPU, memory, and
I/O dimensions. Our work, in contrast, focuses on exploring
TrustZone-M technology for strong hardware-enforced separa-
tion while avoiding the paravirtualization effort associated with
existing solutions [6], [12]. The Arm Mbed uVisor (deprecated
as of Mbed OS 5.10), although supporting Armv8-M, just
implements a supervisory kernel on Mbed OS and is not able
to host two OSes instances. To the best of our knowledge,
this paper presents the first virtualization infrastructure for
TrustZone-enabled MCUs.

VII. CONCLUSION

In this paper, we have introduced a lightweight virtualization
infrastructure for low-end and low-cost systems. We have
shown how the TrustZone-M technology can effectively be
exploited to provide isolation on mixed-criticality systems
which are expected to be deployed on billions of tomorrow’s
Arm MCUs. The implemented hypervisor was evaluated on a
reference low-end Arm multi-core platform, and the assessed
results demonstrate reduced memory footprint and high effi-
ciency and determinism.

302

VIII. ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
helpful feedback, and Arm Ltd. for the loan of the Arm Musca-
A Test Chip Board. This work has been supported by FCT
- Fundação para a Ciência e Tecnologia within the Project
Scope: UID/CEC/00319/2019.

REFERENCES

[1] G. Kortuem, F. Kawsar, V. Sundramoorthy, and D. Fitton, “Smart objects
as building blocks for the Internet of things,” IEEE Internet Computing,
vol. 14, no. 1, pp. 44–51, Jan 2010.

[2] P. Sparks, “The route to a trillion devices,” White Paper, ARM, 2017.
[3] Gartner. (2017) Gartner says 8.4 billion connected ”things” will

be in use in 2017, up 31 percent from 2016. [Online]. Available:
https://www.gartner.com/newsroom/id/3598917

[4] A. Sadeghi, C. Wachsmann, and M. Waidner, “Security and privacy
challenges in industrial Internet of Things,” in ACM/EDAC/IEEE Design
Automation Conference (DAC), June 2015, pp. 1–6.

[5] R. Ernst and M. D. Natale, “Mixed Criticality Systems - A History of
Misconceptions?” IEEE Design Test, vol. 33, no. 5, pp. 65–74, Oct 2016.

[6] F. Bruns, D. Kuschnerus, and A. Bilgic, “Virtualization for Safety-
critical, Deeply-embedded Devices,” in ACM Symposium on Applied
Computing (SAC), 2013, pp. 1485–1492.

[7] P. Modica, A. Biondi, G. Buttazzo, and A. Patel, “Supporting temporal
and spatial isolation in a hypervisor for ARM multicore platforms,” in
IEEE Int. Conf. on Industrial Technology, Feb 2018, pp. 1651–1657.

[8] G. Heiser, “The Role of Virtualization in Embedded Systems,” in
Workshop on Isolation and Integration in Embedded Systems, 2008.

[9] C. Dall and J. Nieh, “KVM/ARM: The Design and Implementation of
the Linux ARM Hypervisor,” ACM SIGARCH Computer Architecture
News, vol. 42, no. 1, pp. 333–348, Feb. 2014.

[10] R. West, Y. Li, E. Missimer, and M. Danish, “A virtualized separation
kernel for mixed-criticality systems,” ACM Transactions on Computer
Systems, vol. 34, no. 3, pp. 8:1–8:41, Jun. 2016.

[11] F. Paci, D. Brunelli, and L. Benini, “Lightweight IO virtualization on
MPU enabled microcontrollers,” ACM SIGBED Review, vol. 15, no. 1,
pp. 50–56, 2018.

[12] R. Pan, G. Peach, Y. Ren, and G. Parmer, “Predictable Virtualization on
Memory Protection Unit-Based Microcontrollers,” in IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), April
2018, pp. 62–74.

[13] Arm, “Automotive safety hypervisor announced for ARM Cortex-
R52,” January 2017, [Online:] https://www.arm.com/about/newsroom/
automotive-safety-hypervisor-announced-for-arm-cortex-r52.php.

[14] S. Pinto and N. Santos, “Demystifying Arm TrustZone: A Comprehen-
sive Survey,” ACM Comput. Surv., vol. 51, no. 6, Jan 2019.

[15] N. Santos, H. Raj, S. Saroiu, and A. Wolman, “Using ARM Trustzone to
Build a Trusted Language Runtime for Mobile Applications,” SIGARCH
Computer Architecture News, vol. 42, no. 1, pp. 67–80, Feb. 2014.

[16] D. Sangorrin, S. Honda, and H. Takada, “Dual operating system archi-
tecture for real-time embedded systems,” in Workshop on Operat. Syst.
Platforms for Embedded Real-Time Applications, 2010, pp. 6–15.

[17] S. Pinto, J. Pereira, T. Gomes, A. Tavares, and J. Cabral, “LTZVisor:
TrustZone is the Key,” in 29th Euromicro Conference on Real-Time
Systems (ECRTS), 2017, pp. 4:1–4:22.

[18] Arm, “TrustZone technology for ARMv8-M Architecture,” Version 2.0
(100690 0200 00 en), Arm Ltd., March 2017.

[19] S. W. Kim, C. Lee, M. Jeon, H. Y. Kwon, H. W. Lee, and C. Yoo, “Se-
cure device access for automotive software,” in International Conference
on Connected Vehicles and Expo (ICCVE), Dec 2013, pp. 177–181.

[20] M. Bertogna, M. Cirinei, and G. Lipari, “Schedulability Analysis of
Global Scheduling Algorithms on Multiprocessor Platforms,” IEEE
Trans. on Paral. and Distri. Systems, vol. 20, no. 4, pp. 553–566, 2009.

[21] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pel-
lizzoni, “Real-time cache management framework for multi-core ar-
chitectures,” in IEEE 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS), April 2013, pp. 45–54.

[22] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Mem-
Guard: Memory bandwidth reservation system for efficient performance
isolation in multi-core platforms,” in IEEE Real-Time and Embedded
Technology and Applications Symposium, April 2013, pp. 55–64.

[23] M. Xu, L. Thi, X. Phan, H. Choi, and I. Lee, “vCAT: Dynamic
Cache Management Using CAT Virtualization,” in IEEE Real-Time and
Embedded Technology and Applications Symposium, 2017, pp. 211–222.

[24] A. Crespo, A. Soriano, P. Balbastre, J. Coronel, D. Gracia, and P. Bonnot,
“Hypervisor Feedback Control of Mixed Critical Systems: the XtratuM
Approach,” in Workshop on Operating Systems Platforms for Embedded
Real-Time Applications (OSPERT), 2017.

[25] T. Frenzel, A. Lackorzynski, A. W. H., and Härtig, “ARM TrustZone
as a Virtualization Technique in Embedded Systems,” Twelfth Real-Time
Linux Workshop, 2010.

[26] S. Pinto, J. Pereira, T. Gomes, M. Ekpanyapong, and A. Tavares,
“Towards a TrustZone-Assisted Hypervisor for Real-Time Embedded
Systems,” IEEE Comp. Arch. Letters, vol. 16, no. 2, pp. 158–161, 2017.

[27] Arm, “Arm Musca-A Test Chip and Board Technical Reference Man-
ual,” Arm Ltd., January 2018.

[28] A. Lackorzyński, A. Warg, M. Völp, and H. Härtig, “Flattening Hierar-
chical Scheduling,” in EMSOFT, 2012, pp. 93–102.

[29] M. Drescher, V. Legout, A. Barbalace, and B. Ravindran, “A Flattened
Hierarchical Scheduler for Real-time Virtualization,” in International
Conference on Embedded Software (EMSOFT), 2016, pp. 12:1–12:10.

[30] J. Martins, J. Alves, J. Cabral, A. Tavares, and S. Pinto, “uRTZVisor:
A Secure and Safe Real-Time Hypervisor,” Electronics, vol. 6, no. 4,
2017.

[31] D. Trilla, C. Hernandez, J. Abella, and F. J. Cazorla, “Cache side-
channel attacks and time-predictability in high-performance critical real-
time systems,” in Proceedings of the 55th Annual Design Automation
Conference (DAC), 2018, pp. 98:1–98:6.

[32] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microarchitec-
tural timing attacks and countermeasures on contemporary hardware,”
Journal of Cryptographic Engineering, vol. 8, no. 1, pp. 1–27, Apr 2018.

[33] H. Kim and R. Rajkumar, “Predictable Shared Cache Management for
Multi-Core Real-Time Virtualization,” ACM Transactions on Embedded
Computing Systems, vol. 17, no. 1, pp. 22:1–22:27, Dec. 2017.

[34] A. Bansal, R. Tabish, G. Gracioli, R. Mancuso, R. Pellizzoni, and
M. Caccamo, “Evaluating the Memory Subsystem of a Configurable
Heterogeneous MPSoC,” in Workshop on Operating Systems Platforms
for Embedded Real-Time Applications (OSPERT), 2018, p. 55.

[35] W. Lamie and J. Carbone, “Measure your RTOS’s real-time perfor-
mance,” Embedded Systems Design, 2007.

[36] J. Shuja, A. Gani, K. Bilal, A. Khan, S. Madani, S. Khan, and
A. Zomaya, “A Survey of Mobile Device Virtualization: Taxonomy and
State of the Art,” ACM Computing Surveys, vol. 49, no. 1, Apr. 2016.

[37] U. Steinberg and B. Kauer, “NOVA: A Microhypervisor-based Secure
Virtualization Architecture,” in European Conference on Computer
Systems (EuroSys), 2010, pp. 209–222.

[38] J. Hwang, S. Suh, S. Heo, C. Park, J. Ryu, S. Park, and C. Kim,
“Xen on ARM: System Virtualization Using Xen Hypervisor for ARM-
Based Secure Mobile Phones,” in IEEE Consumer Communications and
Networking Conference, 2008, pp. 257–261.

[39] R. Ramsauer, J. Kiszka, D. Lohmann, and W. Mauerer, “Look Mum, no
VM Exits!(Almost),” in Workshop on Operating Systems Platforms for
Embedded Real-Time Applications (OSPERT), 2017.

[40] Z. Jiang, N. C. Audsley, and P. Dong, “BlueVisor: A Scalable Real-Time
Hardware Hypervisor for Many-Core Embedded Systems,” in IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS), April 2018, pp. 75–84.

[41] H. Hartig, M. Hohmuth, N. Feske, C. Helmuth, A. Lackorzynski,
F. Mehnert, and M. Peter, “The Nizza secure-system architecture,”
in International Conference on Collaborative Computing: Networking,
Applications and Worksharing, 2005.

[42] P. Lucas, K. Chappuis, M. Paolino, N. Dagieu, and D. Raho, “VOSYS-
monitor, a Low Latency Monitor Layer for Mixed-Criticality Systems
on ARMv8-A,” in 29th Euromicro Conference on Real-Time Systems
(ECRTS), 2017, pp. 6:1–6:18.

[43] N. Cooprider, W. Archer, E. Eide, D. Gay, and J. Regehr, “Efficient
Memory Safety for TinyOS,” in International Conference on Embedded
Networked Sensor Systems (SenSys), 2007, pp. 205–218.

[44] A. Levy, B. Campbell, B. Ghena, D. B. Giffin, P. Pannuto, P. Dutta, and
P. Levis, “Multiprogramming a 64kB Computer Safely and Efficiently,”
in Symp. on Operating Systems Principles (SOSP), 2017, pp. 234–251.

[45] D. Danner, R. Mller, W. Schrder-Preikschat, W. Hofer, and D. Lohmann,
“SAFER SLOTH: Efficient, hardware-tailored memory protection,” in
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS), April 2014, pp. 37–48.

303

APPENDIX A
THE ARM MUSCA-A TEST CHIP

The Musca-A Test Chip Board is a reference implemen-
tation of an Arm TrustZone-M system that helps system
designers get IoT security right from the outset. The Musca-
A board provides access to the Musca-A test chip (Fig. 9)
which implements the Arm CoreLink SSE-200 Subsystem.
According to Fig. 9, the SSE-200 subsystem features an
asymmetric dual-core Cortex-M33, each with a private 2KB
instruction cache. The asymmetry of the design is first due
to fact that CPU1 is equipped with an FPU and DSP, and
can run from 50 MHz up to 170 MHz, while CPU0 has
no associated coprocessor and is only running at 50 MHz.
The cores are connected to the main bus matrix, a multi-layer
AHB5 interconnect, that enables parallel access paths between
multiple masters and slaves in the system. Four 32KB internal
SRAM elements are also connected to the main bus through an
AHB5 Fabric and have a dedicated controller. According to
the Musca-A Technical Reference Manual [27], the internal
SRAM3 memory is tightly coupled to CPU1’s data port; in
contact with Arm, we unveiled that the remaining SRAM
elements are also tightly coupled to CPU0. Still, as part of
the SSE-200, the main bus connects two slave AHB2APB
bus bridges which allow access to system control registers
and peripherals. Additionally, the SSE-200 AHB bus matrix
connects another two memory elements: one is a 2MB code
external SRAM clocked at the same frequency as CPU0; the
other is a QPSI controller connected to an external QSPI 8MB
boot flash memory, clocked at a much lower frequency than
both CPUs.

Musca-A

SRAM2

(3 2 KB)

SRAM
Controller

SRAM2

(3 2 KB)

SRAM
Controller

Dual Cortex-M33

CoreLink SSE-200CoreLink SSE-200

CPU0 CPU1

AHB5 Matrix

AHB5 Fabric AHB5 Fabric

QSPI
Controller SRAM

(2 MB)

SRAM
Controller

SRAM
(2 MB)

SRAM
Controller

AHB5 Mux

QSPI Memory
(8 MB)

APB Mux APB Mux

System
Control

Icache
(2 KB)

Icache
(2 KB)

SRAM1

(3 2 KB)

SRAM
Controller

SRAM1

(3 2 KB)

SRAM
Controller

SRAM0
(32 KB)

SRAM
Controller

SRAM0
(32 KB)

SRAM
Controller

SRAM3
(32 KB)

SRAM
Controller

SRAM3
(32 KB)

SRAM
Controller

Periph.
1

Periph.
1Periph.

Y

Periph.
1

Periph.
1Periph.

X

Fig. 9: Musca-A chip memory and interconnect block diagram.
Adapted from [27].

APPENDIX B
PATH OF MEMORY CONFIGURATIONS IN MUSCA-A

Fig. 10 shows the path for different memory configurations
in the Arm Musca-A Test Chip Board.

eSRAM

CPU0 CPU1
iSRAM

iSRAM

Periph
Block
X

Periph
Block
Y

QSPI Memory

(a) Ideal memory layout

eSRAM

CPU0 CPU1
iSRAM

iSRAM

Periph
Block
X

Periph
Block
Y

QSPI Memory

(b) Common memory layout

eSRAM

CPU0 CPU1
iSRAM

iSRAM

Periph
Block
X

Periph
Block
Y

QSPI Memory

(c) Random memory layout

eSRAM

CPU0 CPU1

QSPI Memory

iSRAM

iSRAM

Periph
Block
X

Periph
Block
Y

(d) Pessimistic memory layout

Fig. 10: Path of memory configurations in Musca-A. Green
line for data and red line for code.

APPENDIX C
PERFORMANCE ASYMMETRY IN MUSCA-A

Aiming at understanding the significant decrease of per-
formance for the AMP NS-VM, we have conducted a set
of experiments to evaluate the performance in the Musca-A
Test Chip. We run the native version of FreeRTOS in different
CPUs and in different security states. According to Fig. 11,
when running at the same frequency (50 MHz), CPU1 can
just reach near 30% of the performance of CPU0. So, the
significant decrease of performance of the AMP NS-VM is
not related to underlying virtualization infrastructure, but due
to the architectural asymmetries in the design of the platform.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CS IPP IP MA MP PS SP

CPU0 Native (S) CPU1 Native (S) CPU1 Native (NS) (CPU1) AMP NS-VM

Fig. 11: Performance asymmetry in Musca-A: CPU0 vs CPU1

304

