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Abstract—Most embedded systems are bound to real-time
constraints. Two of the critical metrics presented in these systems
are determinism and latency. Due to growing in complexity of
embedded applications, real time operating systems (RTOS) are
needed, not only to hide the increasingly complex hardware,
but also to provide services to the system’s running tasks.
Unfortunately, this new layer on an embedded system puts more
pressure on the aforementioned metrics. One of the ways to cope
with this problem is to offload RTOS run-time services to the
hardware layer.

This paper presents a hybrid hardware/software implementa-
tion of this technique upon the well known FreeRTOS, improving
system’s latency and predictability, by migrating critical run-
time services to hardware. The developed hardware accelerators
were synthesized on a field-programmable gate array (FPGA),
exploiting the point-to-point bus Fast Simplex Link (FSL) to
interconnect to the Xilinx’s Microbaze soft-core processor.

Index Terms—Real-time Systems, Determinism, Latency,
FreeRTOS, Hardware Accelerators.

I. INTRODUCTION

Real-time systems are typically present in embedded devices

being designed to support time constrained tasks in meeting

their deadlines. Depending on the need to meet strict deadlines,

these systems can be classified in hard or soft real time

[1]. In hard real-time applications, determinism and latency

are a critical metrics, since missing deadlines may result

catastrophic for the purposes the system serves. In contrast,

for soft real-time systems, missing a deadline is normally not

as critical as in the hard real-time systems.

The presence of a real-time operating system (RTOS) in-

troduces new sources of latency and lack of determinism.

Latency is “wasted” time and its minimization means better

responsivity of the RTOS. This paper addresses a specific

source of software latency, the RTOS lists handling. Lack

of determinism is caused by response time variation (jitter),

another of the least desired characteristics of a RTOS. Most of

jitter sources comes from RTOS’ dynamic data structures and

their management and traversal. For example, the time taken

to select next task to run in the ready queue list of FreeRTOS

priority-based scheduler, depends on its position in the list.

The same reasoning can be applied to other RTOS list-like

structures, namely the timer or mutex wait lists.

In this paper we present a hybrid hardware/software RTOS

that takes advantage of hardware accelerators to improve these

critical metrics and, consequently, improve overall system

performance. Therefore, our approach demonstrates that co-

designed RTOS has a better performance and most importantly

maintains consistent response time and more predictability

compared to its purely software version.

The organization of the paper is as follows: Section II

presents related work. Section III explains the system ar-

chitecture, detailing the operating system, the soft-core pro-

cessor, the communication mechanism and are also outlined

the software parts that were migrate to hardware and the

reasoning behind that migration. Section IV describes the

hardware accelerators, how they work and implementation

details. Section V discusses the experimental results. Lastly,

conclusions and future work are presented in section VI.

II. RELATED WORK

RTOSs nowadays face requirements such as predictability

and low latency, not achieved with more computational power.

Migration to hardware of software tasks and services, ad-

dresses these issues leading to solutions able to cope with these

increasingly strict requirements. Migration of RTOS services,

such as scheduling, time management and task management,

to dedicated hardware modules, provides increased system per-

formance and allows the RTOS to meet metrics requirements

[2]. The well known concept of software thread, similar as

the POSIX model [3], can be applied and shift the paradigm

HW thread, providing a unified transparent model [3]. The

coexistence of a hybrid, software and hardware model in an

operating system environment, raises concerns namely regard-

ing an unified programming model, portability, legacy software

support, suitable interface and synchronization mechanisms,

communication overhead and resource optimization [4], [5],

[6], eventually exacerbated in resource constrained embedded

contexts. As an example of an unified hardware/software

thread programming model, [4], [5], show some of the benefis

of this methodology. Communication overhead on a shared

bus, and resource utilization are maintained low in both cases,

while still offering performance improvements. [5], [7] ,[6]

also argue on the importance of a hardware/software trans-

parent model and homogenous interfaces, in order to achieve

suitable HW abstraction and legacy-software reutilization.

Aiming to promote the exploitation of FPGA-based embed-

ded systems performance, [8] presents the foundations for an

HW accelerated RTOS with run-time partial reconfiguration.

Regardless targeting high-end embedded systems, i.e. not

resource constrained, “hthreads” Real time Kernel [9], and

ReconOS [10], are examples of this approach. These systems

can meet requirements otherwise very difficult to achieve on

a software-only RTOS, providing llow latency, low jitter, in a
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Fig. 1: System Architecture Overview

true parallell system that scales independently of the number

of system tasks.

III. ARCHITECTURE

A. Overview

Figure 1 depicts the architecture of the hybrid FreeRTOS.

It consists in three main hardware components synthesized

in the FPGA fabric: (i) the soft-core processor (MicroBlaze)

where the FreeRTOS and its application runs, above the

hardware abstraction layer (HAL); (ii) the developed hardware

accelerators intended to improve the predictability and latency

of FreeRTOS; and (iii) the FSL buses, used to interconnect the

hardware accelerators to the MicroBlaze soft-core.

Moreover, there are other hardware components synthesized

in the FPGA in order to support the RTOS system tick, which

includes a interrupt controller and a timer, both provided by

Xilinx’s IP library. The connection between these two IP’s and

the soft-core processor is done by PLB bus, which implements

a master/slave communication model.

B. Operating System and Soft-core Processor

1) FreeRTOS: FreeRTOS [11], [12] is a real-time operating

system targeting low-end embedded systems with limited re-

sources supporting thirty-four different architectures. Besides,

its source code architecture is designed in order to enhance its

portability, being mainly composed by two layers, an hardware

independent layer and a portable layer.

The RTOS kernel can be tailored to the application being

built through a configuration file called FreeRTOSConfig.h,

where it is possible to adjust clock speed, heap size, mutual

exclusion objects, API subsets, etc. Moreover, being a open-

source RTOS with a small and straightforward kernel, makes

it possible to a effortless internal redesign. These set of

advantages and features justified the use of FreeRTOS as the

target RTOS for this work.

2) MicroBlaze: MicroBlaze is a soft-core embedded pro-

cessor designed and optimized for implementation in Xilinx

FPGAs [13]. This soft-core processor is supported by the

most recent Xilinx FPGAs in particular Virtex-7, Kintex-

7, Artix-7 and the Xilinx Zynq-7000. MicroBlaze core is

organized as a 32-bit Harvard load/store architecture with

separated bus interface units for data and instruction accesses.

It provides four different memory interfaces: (i) Local Mem-

ory Bus (LMB) to access on-chip local-memory; (ii) IBM

Processor Local Bus (PLB) or the AMBA AXI4 (AXI4) to

connect on-chip and off-chip peripherals and memory; (iii)

Xilinx CacheLink (XCL) to interface with high performance

specialized external memory controllers; and (iv) Fast Simplex

Link (FSL) or AXI4-Stream interface to provide a fast non-

arbitrated streaming communication mechanism.

Finally, the MicroBlaze is highly configurable, providing

selective enabling of additional functionality, namely in terms

of cache size, pipeline depth, integrated peripherals, MMU and

bus-interfaces.

3) Fast Simplex Link Bus: The Fast Simplex Link (FSL)

bus is a fast communication mechanism between two design

elements [14] and is structured with a unidirectional point-to-

point FIFO-based communication, which can be configured

as master or slave. With a maximum transfer speed of 300

million words/sec, the coprocessors connected to the master

ports of the FSL bus pushes data and control signals onto the

FIFO. In contrast, the slave ports of the FSL bus reads and

pops from the FIFO buffer. The internal clock of this buffer

has the same frequency of the processor system clock.

MicroBlaze offers 16 parallel FSL channels, equally dis-

tributed between masters and slaves ports. In this paper, the

FSL bus was chosen to interconnect the hardware accelerators

to the soft-core, since it provides, as previously mentioned,

point-to-point dedicated channels, which each accelerator can

take advantage of, overcoming the traditional problem of

concurrent access and avoiding latency problems, regarding

other buses (e.g. PLB bus).

C. Selection of the dedicated hardware accelerators

The FreeRTOS components that have been migrated from

the software layer to the hardware layer were the scheduler and

the kernel software timers. These two components represent

the services available on FreeRTOS that are the major sources

of jitter and overhead.

The heart of an operating system is the scheduler. It se-

lects the ready task to execute next, based on its scheduling

algorithm. In a complex and heavy system, where there are

dozens of tasks ready to execute, the scheduler can introduce

undesired response jitter and a lot of overhead. Taking this

into account, the FreeRTOS scheduler was off-loaded into the

FPGA fabric.

Delaying tasks is also typically needed in an embedded

system. FreeRTOS achieves this by providing for each task a

dedicated software-based counter, that is decremented at each

system tick. In a complex system, where it is likely to exist

several delayed tasks, this procedure could represent a huge

source of jitter. Therefore, it is advantageous to free the kernel

of these software-based counters by migrating them to the

hardware layer.

The FreeRTOS API was maintained intact eliminating the

porting effort for legacy applications. Therefore, migration of

FreeRTOS run-time services to the hardware involved changes
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Fig. 2: Hardware scheduler overview

to the body of several functions in hardware abstraction layer

(HAL) by calling the respective hardware modules.

Migration of the aforementioned FreeRTOS services into

the hardware layer are responsible for the reduction of jitter

and system overhead, increasing the RTOS determinism and

predictability, which will be presented later in this paper.

IV. IMPLEMENTATION

A. Hardware Scheduler

As previously mentioned, the RTOS scheduler is a large

time consuming mechanism and one of the sources of jitter.

Hence, the overhead introduced, can lead to the miss of

deadlines, which in the case of hard real-time systems could

have catastrophic consequences. One of the solutions to reduce

such overhead is accomplished by migrating it to hardware.

The implemented hardware scheduler is depicted in Figure

2 and has the following relevant features: (i) the selection

algorithm is based on a fixed-priority pre-emptive scheduling;

(ii) the data structure architecture is based on a binary tree

structure; (iii) the number of supported tasks is parametrized

in a factor of 2n; (iv) the information about the tasks in kept on

an on-chip register bank; (v) the implementation is based on

combinational logic, which enables the scheduler to provide

the highest priority task in a single clock cycle; (vi) and finally,

the communication between this hardware accelerator and the

CPU is performed by the FSL bus, through a data packet of

32-bits width.

As said, the core data structure is a binary tree. The base

HDL module (TreeNode2) of the binary tree (for N=1) is

composed by a node with the combinational logic expression

to find the most priority task between two tasks. The other

modules will be composed always by a TreeNode2 and

another two modules equal to the tree node for the factor N-

1. This means, for example, that the module for N=2 will be

composed by three base modules (two N-1 TreeNode2’s plus

another TreeNode2). Since all the modules are built using

combinational logic, the time needed to find the most priority

task is equal to the propagation time of the signals, which is a

huge improvement in contrast with the software counterpart.

In Figure 2 is presented the hardware task tree and the data

contained in each register representing a task in hardware. The

three most significant bits represent the current state of the task

(“b”: blocked, “w”: suspended or “f”: finished respectively);

“priority” corresponds, as the name implies, to the priority

level of the task; “run” and “ready” are also used to define

Fig. 3: Hardware Kernel Timers overview

the tasks state; the “pxTCB” field contains the pointer to the

address of the software TCB; “ID” identifies the task in this

register bank; and finally, “command” represent the operation

to be performed (e.g. read the most priority task or write the

task into the register bank).

The FSL wrapper implements a simple protocol, containing

two messages, “read” and “write”. When a read message is

received in the module, this acknowledges sending the most

priority task. When a write message is received, it is followed

by the data to be inserted in the respective register.

B. Hardware Kernel Timers

FreeRTOS provides services to block a task for a given

number of ticks. If one of these services is called, the RTOS

has a dedicated software timer, which is related to each

delayed task. At each system tick, the software timer is

decremented and verified if it has expired, and if this is the

case, the task is unblocked. This type of operation injects jitter

in the system and consequently non-determinism, because the

time to update each counter depends on the number of the

delayed tasks present in the system. In a hardware approach,

and due to the parallel nature of the hardware, it is possible

to reduce and even eliminate this source of non-determinism

present in the operating system.

Figure 3 depicts the internal block diagram of the hardware

kernel timers’ IP. It has a bank of n timers, where the n is the

number of tasks accepted by the scheduler. Each timer, as in

the software-based version, is related to a task.

This component is connected to the MicroBlaze and to the

scheduler IP. The connection between the processor and this

peripheral is done only by the FSL master bus, because it is a

write-only peripheral. The output of this device is hard-wired

directly to the scheduler. Whenever a timer reaches zero, the

associated task must change from suspended state to ready

state. This is done, by sending a signal from the hardware

kernel timer to the scheduler.

In addition to the timer bank, this IP has also a module

in charge of decoding the data packet from the processor,

delivered through the FSL bus. This data packet is composed

by three fields. The lower twenty four bits, are the value of the

desired suspension time for the task identified in the next five
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bits. The remaining bits out of the 32-bits data packet are not

defined, and could be used in further versions of this project.

Each timer is independent from the others, so the operations

executed on one of them does not interfere with the others.

Besides that, each is hard-wired with a specific task on the

scheduler, so even if all the timers expire at the same time,

the time needed to process the changes at the scheduler side

is always the same. Thereby, the jitter and non-determinism

caused by the process of transition between states (from

suspended to ready), introduced by software counterparts, are

also eliminated.

As in the hardware scheduler, an FSL wrapper was required

to establish the communication between this IP and the Mi-

croBlaze. In this case is only required to give support to the

write operation. When a write message is received with the

intended configuration, the counter is programmed and it will

start to decrement at each system tick.

C. Hardware Abstraction Layer

Leveraging accelerators offloading, requires re-factoring

of FreeRTOS hardware abstraction layer. The main

changes will target FreeRTOS functions related to

task control and management (i.e. vTaskCreate(),

vTaskSuspend(), vTaskResume(), vTaskDelay()
and vTaskDelete()).

Task creation (vTaskCreate()) needs to generate an ID,

which will identify the task in the hardware scheduler, and

send an FSL data packet to the hardware scheduler with all

needed information (ID, the pointer to the TCB and the task

priority). It should be noted that the aforementioned ID is a

new field added to the TCBs structure. When a task is deleted

(vTaskDelete()) a data packet is sent to the hardware

scheduler, changing only the finish bit in the corresponding

task TCB entry.

FreeRTOS allows the suspension of a task

(vTaskSuspend()), for an indefinite amount of time,

and after its resumption (TaskResume()). Besides

that, it is possible to suspend a task for a fixed period

(vTaskDelay()). Suspending a task in the context of

the hybrid FreeRTOS, is nothing more than sending a data

packet through the FSL bus to the hardware scheduler, where

the blocked bit is set and the others cleared. On the other

hand, resuming is also very straightforward, since it reverts

the previous settings. At last, to delay a task, instead of

communicating with the scheduler, a data packet is sent to

the hardware timers block, which is then responsible to signal

the changes to the hardware scheduler.

Finally, is also relevant to say that a complete redesign was

made to the FreeRTOS function responsible for context switch-

ing (vTaskSwitchContext()). This procedure consists in

reading the hardware scheduler through its FSL-based bus to

get the next ready task. The received data packet is decoded,

by performing a mask, to retrieve the pointer to the TCB of the

new task to execute. At last, the pxCurrentTCB is updated

to point to the new task’s TCB.

V. EXPERIMENTAL RESULTS

The presented system architecture was implemented on a

XUP Virtex-II Pro development platform under MicroBlaze

7.10d and FreeRTOS 7.4.0 versions, and the project was

developed and synthesized using the EDK 10.1 tools ecosys-

tem, provided by Xilinx. The implementation of the dedicated

hardware modules was done in Verilog.

In the following section are presented the results obtained

from measurements made on the hybrid RTOS, compared to

the software-based RTOS.

A. Evaluation

The hardware accelerators implemented to support FreeR-

TOS are directly related to the task switching mechanism. This

way, to infer the benefits obtained from the hardware approach,

the evaluation and validation was realized by measuring the

latency and jitter in the manipulation of the various kernel data

structures.

In order to access the improvements introduced by our ap-

proach, both the hybrid and the software-based versions were

instrumented through a specific hardware counter module,

built for this purpose. This hardware module does not interfere

with the system and takes advantage of an FSL interface.

void vTickISR( void *pvBaseAddress ){

CONFIG_COUNT();
START_COUNT();

#ifdef (Hybrid_FreeRTOS == 0)
vTaskIncrementTick();

#endif

STOP_COUNT();
READ_COUNT();
CLEAR_COUNT();

(...)

START_COUNT();

vTaskSwitchContext();

STOP_COUNT();
READ_COUNT();
CLEAR_COUNT();

}

Listing 1: Evaluation measure points

In the Listing 1, shows that the software-based ver-

sion measurements were taken in two points: (i) during a

scheduling point, specifically the switching between tasks

(vTaskSwitchContext()) and (ii) the increment of the

software timers (vTaskIncrementTick()) executed at

each system tick (vTickISR()). On the other hand, in

the case of the hybrid version, as the software timers were

migrated to hardware, so there is no software, measurements

were taken only during the scheduling point and the corre-

sponding new scheduled task (vTaskSwitchContext()).

Table I show the results at vTaskSwitchContext(), and

Table II shows the results at vTaskIncrementTick().
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TABLE I: Measured latency during the execution of

vTaskContextSwitch().

5 Tasks 10 Tasks 15 Tasks
FreeRTOS

(Sw)
FreeRTOS

(Hw)
FreeRTOS

(Sw)
FreeRTOS

(Hw)
FreeRTOS

(Sw)
FreeRTOS

(Hw)

μ 86.51 46.00 89.31 46.00 89.90 46.00
σ 13.46 0.00 14.64 0.00 14.78 0.00

TABLE II: Measured latency during the execution of

vTaskIncrementTick().

5 Tasks 10 Tasks 15 Tasks
FreeRTOS

(Sw)
FreeRTOS

(Sw)
FreeRTOS

(Sw)
μ 305.97 359.87 375.90
σ 212.67 259.72 259.75

In Table I are presented the results taken from three different

application scenarios. All of them are based in the same con-

trol flow: a number of tasks (five, ten and fifteen) are created

before the start of the scheduler (vTaskStartScheduler)

and they have atomic priority levels; when the scheduler starts,

Task1 will be automatically dispatched and after this task will

suspend itself, leading to the dispatch of Task2, and so on.

As can be seen from the collected data, the mean latency

in the hybrid version of FreeRTOS is significant lower than

the value from the software-based version. More than that,

regardless the number of tasks within the system, this opera-

tion takes 46 system ticks. As a result, the standard deviation,

which by itself represents the presence of jitter, is reduced to

zero in the hybrid approach.

During the measurements, was possible to verify that the

increment of the counters associated with each task is a

costly and time consuming procedure, as well as one of

the biggest sources of jitter. Since, in our approach this

procedure was completely moved to hardware, the RTOS will

be entirely free of this jitter and latency. Table II depicts

the results obtained just from the software-based RTOS for

vTaskIncrementTick, due to previously mentioned fact

that for the hybrid RTOS these results will be zero.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a hybrid real-time operating

system based on FreeRTOS to take advantage of the developed

hardware accelerators to improve system latency and determin-

ism. This approach led to a internally redesign of FreeRTOS

software, more specifically inside the hardware abstraction

layer, in terms of the functions responsible for the management

and synchronization of tasks.

The evaluation results showed convincing improvements

on the aimed levels: system latency and determinism. The

execution time to schedule a new task was reduced on av-

erage at least by 53.17%, 51.50% and 51.16% respectively

for each test-case, when compared with the software-based

version. More important, the execution time for managing

tasks is fixed, regardless the number of tasks, which proves

the improvement in system predictability. Also, the jitter and

latency present in FreeRTOS due to the software timers was

also removed with the introduction of the hardware kernel

timers in the system.

In short, in the era that embedded systems are rather com-

plex and continuously evolving, real-time operating systems,

such FreeRTOS, require a more deterministic and predictable

execution. Thereby, implementing software components in

hardware accelerators can improve system performance and

reduce response jitter, as ours experimental results proved.

Proposed as future work is the redesign of a full version

of FreeRTOS following our approach, aiming the complete

support and refactoring of all the remaining APIs. Moreover,

the hardware scheduler should be redesigned in order to

prevent the priority inversion scenarios that occurs when

tasks and interrupts coexist in the same system. Additionally,

considering that multiprocessing is becoming an emergent

trend on todays embedded market, future research will be also

focused on ways and possibilities to migrate our approach to

multi-core architectures.
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