
The 4S Symposium 2016 – S. Pinto 1

HYPERVISOR FOR REAL TIME SPACE APPLICATIONS

S. Pinto(1,2), A. Tavares(1), S. Montenegro(2)

(1)Centro Algoritmi, University of Minho, Portugal,

+351 253 510180, sandro.pinto@dei.uminho.pt,atavares@dei.uminho.pt
(2)Aerospace Information and Technology, University of Würzburg, Germany,

+49 931 31 83715, sergio.montenegro@uni-wuerzburg.de

ABSTRACT

Virtualization technology is a mainstream tool in servers, presenting huge benefits in terms of power

management and service consolidation. Over the last few years, virtualization started gaining also

momentum in safety-critical systems, and may become a key technology for future space applications

due to the reduction on size, weight and power budget while offering increased dependability.

Complex and critical systems like airplanes and spacecraft implement a very fast growing amount of

functions. Typically, those systems were implemented with fully federated architectures, but the

number and complexity of desired functions of today’s systems lead aerospace industry to follow

another strategy. European Space Agency proposed Integrated Modular Avionics for Space to be

considered as reference flight computer architecture for space applications. Current approach goes

towards higher integration provided by time and space partitioning of system virtualization. Identified

issues and challenges go behind real time virtualization and penalties incurred by existent software-

based virtualization solutions.

This work presents RTZVisor, a real time hypervisor for space applications assisted by commercial

off-the-shell hardware. ARM TrustZone technology is exploited to implement a virtualization

solution with low overhead and low footprint. This is demonstrated by running multiple partitions of

RODOS operating system on a Xilinx ZC702 board.

1 MOTIVATION

The market of complex and critical systems like cars, airplanes and spacecraft have experienced

unprecedented growth over the last few years and is expected to continue growing exponentially for

the foreseeable future [1]. The number and complexity of desired functions had evolved in such a

way that fully federated architectures, where each function is implemented in its own embedded

controller, become completely impracticable. Naturally, those industries rapidly tried to find other

alternatives, and aeronautics pioneering the shift from traditional federated architectures to an IMA

[2] architecture (Figure 1). By combining several applications into one powerful computing resource,

they were able to get a reduction on Size, Weight and Power (SWaP) of their computing systems, and

consequently reduce the cost of their solutions. For example, Honeywell found that for their work on

aircraft Airbus A380, IMA provided a 50% volume and 40% weight reduction from previous

federated surveillance equipment [3].

As space domain shares the same basic needs of aeronautics, they rapidly concluded that IMA

strategy could be spun-in to the space domain. The trend on the first European space projects

mailto:sandro.pinto@dei.uminho.pt
mailto:atavares@dei.uminho.pt
mailto:sergio.montenegro@uni-wuerzburg.de

The 4S Symposium 2016 – S. Pinto 2

following an IMA approach was to integrate all separate data management and control system units

into one single computing board, but without virtualized partitions [4]. Typically, a single real time

operating system (RTOS) was in charge of managing all system resources and consolidating

applications into different (application) partitions, being responsible for the successful coexistence of

all software. The problem of such a consolidation strategy is that space applications have different

levels of criticality, which mean a simple modification in one application results in a new certification

and validation campaign at the maximum level of criticality. The introduction of Time and Space

Partitioning (TSP) [5, 6] for separation of concerns between functionally independent software

components was the solution to achieve higher level of integration, while maintaining the robustness

of federated architectures. By containing and/or isolating faults, TSP approach eliminates the need to

re-validate unmodified applications on an IMA system, because the guaranteed isolation it provides

limits re-certification efforts only at the partition level. Based on those concepts, European Space

Agency (ESA) proposed Integrated Modular Avionics for Space (IMA-SP) as a reference flight

computer architecture for space applications [7].

Virtualization technology has been used as an implementation technique to provide TSP. Over the

last few years several works have been proposed in the aerospace domain [6, 8, 9, 10, 11]. Some of

them follow a (software-based) full-virtualization approach, while others implement para-

virtualization. Between both approaches there is a trade-off between flexibility and performance: full-

virtualization incurs in a higher performance cost, while para-virtualization incurs in a higher design

cost. Taking in mind the penalties incurred by software-based virtualization, research and industry

focus their attention in providing hardware support to assist virtualization. While Intel, ARM and

Imagination/MIPS introduced their own commercial off-the-shell (COTS) technologies, some

researchers developed their own customized hardware [12]. Since then, several hardware-based

solutions have been proposed [13, 14, 15], but none of them was specifically designed for the

aerospace domain. Among existent COTS virtualization technologies, ARM TrustZone [16] is

gaining particular attention due to the ubiquitous presence of ARM-based devices in the embedded

sector, as well as the supremacy of TrustZone-enabled processors when comparing with

Virtualization-enabled processors. The problem is existent TrustZone-based solutions [14, 17, 18]

not only fail in providing ability for running an arbitrary number of partitions (they mainly rely on a

dual-OS configuration), but also they (i.e., TrustZone-based solutions) were not designed taking into

consideration the real time requirements of safety-critical systems.

Our work goes beyond state-of-art presenting a virtualization solution assisted by COTS hardware

carefully designed for real time space applications. A distinctive aspect of our hypervisor is the use

of ARM TrustZone technology to assist virtualization, which allows to run multiple instances of an

RTOS on a single on-board computer with really low overhead and low footprint. This is

demonstrated by running several RODOS OS partitions on a Xilinx ZC702 board. Moreover, the

recent announcement of ARM about their decision of introducing TrustZone technology in all Cortex-

M and Cortex-R processors series altogether with the recent publication of Steven VanderLeest [19]

envisioning how to tackle the challenges of the future of avionics, completely pushed our work to

another level: we will be able to use the same virtualization approach for middle and low-end

embedded applications, which can perfectly align with the trend of small satellites going viral; we

have now an implemented prototype covering a huge part of the challenges that Steven envision, and

a system platform that can be easily extended to cope with requirements like security and

obsolescence.

The 4S Symposium 2016 – S. Pinto 3

Figure 1 - Moving from fully federated architectures to an IMA approach

2 VIRTUALIZATION

Virtualization technology, which allows the co-existence of multiple OSes on the same hardware

platform, is well established in the enterprise and cloud computing space, presenting huge benefits in

terms of load balancing, power management and service consolidation. Over the last few years,

virtualization has proven to be a gamer-changer in the embedded systems field [20]. The possibility

of co-existence of heterogeneous OS environments altogether with the possibility of isolation of

multiple workloads, with different levels of criticality, have attracted embedded industries

(automotive, aerospace, medical, etc) to build systems with smaller form factor and reduced bill of

materials (BOM).

Traditional embedded virtualization solutions [6, 8, 9, 10, 11] follow essentially two different

approaches: full-virtualization and paravirtualization. In full-virtualization [8, 9, 10, 11] partition

OSes do not require any modification into the kernel code, but the hypervisor needs to trap and

emulate all the privileged instructions, incurring in a significant performance degradation.

Paravirtualization [6, 8, 11], in contrast, requires modification of partition OSes to include specific

hypercalls into the kernel, to request services directly from the hypervisor. While providing several

performance advantages, paravirtualization incurs in a higher design cost since each guest OS must

be modified to fit the hypervisor. More recently, taking in mind the penalties incurred by software-

based virtualization approaches, research and industry focus their attention in providing hardware

support to assist virtualization. The Big Players of processors industry introduced their own COTS

technologies: Intel introduced Intel Virtualization Technology (VT), Intel Trusted Execution

Technology (TXT) and Intel Software Guard Extensions (SGX); ARM presented ARM Virtualization

Extensions (VE) and ARM TrustZone; and, finally, Imagination/MIPS recently announced

OmniShield.

Intel VT and ARM VE allow the implementation of hardware-based full-virtualization [13, 21]. Both

technologies rely on a new privileged processor mode - the hypervisor mode - altogether with MMU

support for 2-level address translations. This features allow for direct execution of guests without the

need for de-privileging, enabling certain instruction to directly affect virtual registers instead of

trapping to the hypervisor: the minimization of the number of trap-and-emulate occurrences boosts

The 4S Symposium 2016 – S. Pinto 4

considerably the execution performance. ARM TrustZone technology, although implemented for

security purposes, allow a special kind of virtualization similar to full-virtualization. With a virtual

hardware support for dual world execution, a new privileged processor mode called monitor mode,

and other TrustZone features like memory segmentation, it is possible to provide time and spatial

isolation between execution environments. This technology starts being widely used for a dual-OS

configuration [14, 17, 18, 22], but there is a lack of solutions for multiple guest OS support. MIPS

Virtualization, powered by Imagination OmniShield technology, not only adds support for hardware

full-virtualization, but also extends the binary approach of TrustZone Technology to create multiple

secure domains: applications that need to be secure are effectively and reliably isolated from each

other, as well as protected from non-secure applications. The hypervisor developed by Hessel

research group [15, 23] is an example of the use of this technology to implement real time

virtualization. Finally, regarding Intel TXT and Intel SGX, we are not aware of any work that exploits

those technologies to implement, per se, any kind of virtualization. This technologies, contrarily to

TrustZone, are just being used to add security features to existent Intel-based virtualization solutions.

3 TRUSTZONE OVERVIEW

TrustZone technology [16] refers to security extensions implemented by ARM since ARMv6

architecture. The TrustZone hardware architecture can be seen as a dual-virtual system, partitioning

all system physical resources into two completely separated execution environments: the Secure and

the Non-Secure worlds.

3.1 Processor

At the processor level, the most significant architectural change is its partition into two separate

worlds - the secure world and the non-secure world. A new 33rd processor bit, the NS (Non-Secure)

bit accessible through the SCR (Secure Configuration Register) register, indicates in which world the

processor is currently executing, and is propagated over the memory and I/O peripherals buses. To

preserve the processor state during the world switch, TrustZone adds an extra processor mode: the

monitor mode. The monitor mode is completely different from other supported modes, because

independently of the state of NS bit, when the processor runs in this mode the state is always

considered secure. As the processor only runs in one world at a time, software stacks in the two worlds

can be bridged via a new privileged instruction - SMC (Secure Monitor Call). The monitor mode can

also be entered by configuring it to handle IRQ, FIQ, and Aborts exceptions in the secure world. To

provide the exception behavior described above, TrustZone specifies three sets of exception vector

tables - one for the normal world, one for the secure world, and another for the monitor mode.

Furthermore, to guarantee a strong isolation between secure and normal states, some special registers

are banked, such as a number of System Control Coprocessor (CP15) registers. Some secure critical

processor core bits and CP15 registers are either totally unavailable to non-secure world or access

permissions are closely under supervision of the secure world.

3.2 Memory

TrustZone extensions split CPU into two distinct environments, which, per se, is not enough to fully

partition memory between two worlds. The TrustZone Address Space Controller (TZASC) and the

TrustZone Memory Adapter (TZMA) extend security to protect multiple regions of memory from

software attacks. TZASC enables partition of DRAM into different memory regions: the TZASC has

a programming interface - accessible only from the secure side - that can be used to configure a

The 4S Symposium 2016 – S. Pinto 5

specific memory region as secure or non-secure. By default, secure world applications can access

normal world memory but the reverse is not possible. TZMA provides similar functionality but for

off-chip ROM or SRAM.

The TrustZone-aware Memory Management Unit (MMUs) provides two distinct MMU interfaces,

enabling each world to have a local set of virtual-to-physical memory address translation tables. The

isolation is still available at the cache-level, because processor caches have been extended with an

additional tag which signals in which state the processor accesses the memory.

3.3 Devices and Interrupts

System devices can be dynamically configured as secure or non-secure through the TrustZone

Protection Controller (TZPC), opening possibility to change the security state of a device at run-time.

To support the robust management of secure and non-secure interrupts, the Generic Interrupt

Controller (GIC) provides both secure and non-secure prioritized interrupt sources. An interrupt can

be configured as a secure interrupt through the Interrupt Security Register. In addition, the interrupt

controller allows prioritization of interrupts, allowing the configuration of secure interrupts with a

higher priority than the non-secure interrupts. Such configurability prevents non-secure software to

perform a denial-of-service attack against the secure side. Besides that, the GIC supports several

interrupt models, which allows the configuration of IRQs and FIQs to secure or non-secure interrupt

sources. The suggested model by ARM proposes the use of IRQs as non-secure world interrupt

sources, and FIQs as secure interrupt sources.

4 RODOS

Real time On-board Dependable Operating System (RODOS) [24] was originally developed for space

applications at DLR (German space agency), and now distributed as open source. RODOS was

designed for application domains demanding high dependability (e.g., space) and targets the

irreducible complexity in all implemented functions.

An important aspect in the selection of RODOS is its integrated real time middleware. Developing

the control and payload software on the top of a middleware provides the maximum of modularity

today. Applications/modules can be developed independently and it is very simple to interchange

modules without worrying about side effects, because all modules are encapsulated as Building

Blocks (BB) and they can access other resources only by well-defined interfaces.

RODOS was implemented as a software framework in C++. It is organized in layers: the lowest layer

(1) is responsible for managing the embedded system hardware (HAL: Hardware Abstraction Layer);

the next layer (2), kernel, administrates the local resources, threads and time. On top of the kernel is

located the middleware (layer 3) which enables communication between BBs using a publisher

subscriber multicast protocol. Finally on the top of the middleware the user may implement his

applications (layer 4) as a distributed software network of simple BBs. The Building Blocks API on

the top of the middleware follows a service oriented interface. BBs interact by providing services to

other BBs and using services from other BBs.

As mentioned before, the original purpose of RODOS was to control satellites. It was designed as the

brain of the Avionic system and introduces the NetworkCentric concept [25]. A NetworkCentric core

avionics machine consists of several harmonized components which work together to implement

dependable computing in a simple way. In a NetworkCentric system we have a software network of

BBs and a hardware Network interconnecting vehicles (radio communication), computers inside of

The 4S Symposium 2016 – S. Pinto 6

vehicles (buses and point to point links), intelligent devices (attached to buses) and simple devices

attached to front-end computers. To communicate with (node) external units, including devices and

other computing units, each node provides a gateway to the network and around the network's several

devices may be attached to the system. The messages exchange service provided by the middleware

and gateways is asynchronous, using the publisher-subscriber protocol. No fixed communication

paths are established and the system can be reconfigured easily at run-time. For instance, several

replicas of the same software can run in different nodes and publish the result using the same topic,

without knowing each other. A voter may subscribe to that topic and vote on the correct result.

Application can migrate from node to node or even to other vehicles without having to reconfigure

the communication system. The core of the middleware distributes messages only locally, but using

the integrated gateways to the NetworkCentric network, messages can reach any node and application

in the network. The communication in the whole system includes software applications, computing

nodes and even IO devices. Publishers make messages public under a given topic. Subscribers (zero,

one or more) to a given topic get all messages which are published under such topic.

5 RTZVISOR

RTZVisor (Real Time TrustZone-assisted Hypervisor) is a bare-metal hypervisor carefully designed

to meet the specific requirements of real time space applications. Exploiting COTS ARM TrustZone

technology, it is possible to implement strong spatial and temporal isolation between system

partitions. All data structures and hardware resources are pre-defined and configured at design time,

and devices and interrupts can be directly managed by specific partitions. Exceptions and errors are

managed through a special component called Health Monitor, which is able to recover partitions from

undefined states.

Figure 2 depicts the complete system architecture: RTZVisor runs in the most privileged mode of the

secure world side, i.e., monitor mode, and has the highest privilege of execution; unmodified guest

OSes can be encapsulated between the secure and non-secure world side – the active partition runs in

the non-secure world side, while inactive partitions are preserved in the secure world side; for active

partitions the RTOS runs in the kernel mode, while RT applications run in user mode.

5.1 Virtual CPU

TrustZone technology virtualizes each physical CPU into two virtual CPUs: one for the secure world

and another for the non-secure world. Between both worlds there are an extensive list of banked

registers. Typically existent TrustZone-based solutions implement only dual-OS support, where each

guest is running in a different world. In this particular case, the virtual CPU support is guaranteed by

the hardware itself and therefore each world has its own virtual hard-processor.

Our system is completely different. Since it is able to support an arbitrary number of partition OSes,

all of them need to run in the non-secure side (once at a time), dictating the sharing of the same virtual

hard-processor, supported by software. For that reason, the virtual soft-processor state (vCPU) of

each partition should be preserved. This virtual soft-processor state includes the core registers for all

processor modes (vCore), the CP15 registers (vCP15) and some registers of the GIC (vGIC),

encompassing a total of 55 registers. RTZVisor offers as many vCPUs as the hardware provides, but

only a one-to-one mapping between vCPU, partition and real CPU is supported.

The 4S Symposium 2016 – S. Pinto 7

Figure 2 - System Architecture

5.2 Memory

Traditional hardware-assisted memory virtualization relies on Memory Management Unit (MMU)

support for 2-level address translation, mapping guest virtual to guest physical addresses and then

guest physical to host physical addresses. This MMU feature is a key feature to run unmodified

partition OSes, and also to implement isolation between partitions.

TrustZone-enabled system on chips (SoCs) only has MMU support for single-level address

translation. Nevertheless, they provide a component called TrustZone Address-Space Controller

(TZASC) which allows partition of memory into different segments. This memory segmentation

feature can be exploited to guarantee strong spatial isolation between partitions, basically by

dynamically changing the security state of the memory segments of partitions. Only the partition that

is currently running (in the non-secure side) should have its own(s) memory segment(s) configured

as non-secure, and the remaining memory as secure. If the running partition tries to access a secure

memory region (belonging to an inactive partition or either the hypervisor), an exception is

automatically triggered and redirected to the hypervisor. Since only one guest can run at a time, there

is no possibility of the inactive partitions (belonging momentously to the secure side) to change the

state of another partition.

Memory segments can be configured with a specific granularity, which is implementation defined,

depending on the vendor. In the hardware under which our system was deployed, Xilinx ZC702,

memory regions can be configured with a granularity of 64MB, which mean for a memory of 1GB it

is possible to isolate a total of 15 partitions (one memory segment is for the hypervisor itself). Our

system relies on the TZASC to implement isolation between partitions, and MMU supporting only

single-level address translation. It means that guests have to know the physical memory segment they

can use in the system, requiring relocation and consequent recompilation of the partition OS. Figure

3 depicts the memory setup and respective secure/non-secure mappings, for a virtualized system

consisting in the hypervisor and four partitions. In this specific configuration, the hypervisor uses the

first memory segment (0x00000000 – 0x03FFFFFF), and has access to all memory. Partition OS-0

uses the third 64MB memory segment, and is only allowed to access one non-secure memory segment

(0x08000000 – 0x0BFFFFFF); Partition OS-1/2/x are mapped the same way, but within their

respective memory segment.

The 4S Symposium 2016 – S. Pinto 8

Figure 3 – System memory map

5.3 Scheduler

RTZVisor implements a cyclic scheduling policy, to ensure one partition cannot use the processor for

longer than its defined CPU quantum. The time of each slot can be different for each partition,

depending on partition criticality classification, and is configured at design time. By adopting a

variable time slot strategy instead of a multiple fixed approach, the hypervisor interference is

minimized and it is ensured higher performance and deterministic execution, because partition is only

interrupted when the complete slot is over.

5.4 Devices

TrustZone technology allows devices to be (statically or dynamically) configured as secure or non-

secure. This hardware feature allows the partition of devices by both worlds and enforces isolation at

the device level.

RTZVisor implements device virtualization adopting a pass-through policy, which means devices are

managed directly by partitions. To ensure strong isolation between partitions, devices are not shared

between them and are assigned to respective partitions at design time. To achieve this strong isolation

at device level, devices assigned to partitions are dynamically configured as non-secure or secure,

depending on partition state (active or inactive). This guarantees an active partition cannot

compromise the state of a device belonging to another partition, and if an active partition tries to

access a secure device then an exception will be automatically triggered and handled by RTZVisor.

Devices assigned to the hypervisor itself (e.g., Hypervisor timer) are always configured as secure and

can never be accessed by any partition.

5.5 Interrupts

In TrustZone-enabled SoCs, the GIC supports the coexistence of secure and non-secure interrupt

sources. It allows also the configuration of secure interrupts with a higher priority than the non-secure

interrupts, and has several models of configuration to assign IRQs and FIQs to secure or non-secure

interrupt sources.

The 4S Symposium 2016 – S. Pinto 9

RTZVisor configure interrupts of secure devices as FIQs, and interrupts of non-secure devices as

IRQs. Secure interrupts are redirected to the hypervisor, while non-secure interrupts are redirected to

the active guest (without hypervisor interference). When a partition is under execution, only the

interrupts managed by this partition are enabled, which minimizes inter-partition interferences

through hardware. Interrupts of inactive partitions are momentaneously configured as secure, and

consequently redirected to the hypervisor. The hypervisor receives and processes the interrupt, and

the virtual GIC of the inactive guest is updated. When a partition is rescheduled, interrupt is then

processed. The prioritization of secure interrupts avoid active partition to perform a denial-of-service

attack against the secure side (hypervisor).

5.6 Time

Temporal isolation in virtualized systems is typically achieved using two levels of timing: the

hypervisor level and the partition level. For the partition level, hypervisors typically provide timing

services which allow guests to have notion of virtual or real time. In the first case, each time a partition

is inactive the time is paused, and once the guest is rescheduled the timekeeping is resumed. In the

meantime, there is a drift between the guest time and the absolute time. For mission critical real time

systems, where time-responsiveness plays a critical role, this is an undesired approach, because

partitions have necessarily to keep track of the wall-clock time.

RTZVisor implements also two levels of timing: it has internal clocks for managing the hypervisor

time, and internal clocks for managing the partitions time. The timers dedicated to the hypervisor are

configured as secure devices, i.e., they have higher privilege of execution than the timers dedicated

to the active partition. This means that despite of what is happening in the active partition, if an

interrupt of a timer belonging to the hypervisor is triggered, the hypervisor takes control of the system.

Whenever the active guest is executing, the timers belonging to the partition are directly managed

and updated by the partition on each interrupt. The problem is how to deal and handle time of inactive

guests. For inactive guests the hypervisor implements a virtual tickless timekeeping mechanism based

on a time-base unit that measures the passage of time. Therefore, when a partition is rescheduled, its

internal clocks and related data structures are updated with the time elapsed since its previous

execution.

5.7 Health Monitor

The Health Monitor (HM) component is the module responsible for detecting and reacting to

anomalous events and faults. Although at an early stage of development, once an error or fault is

detected, RTZVisor reacts to the error providing a simple set of predefined actions. For example, if a

partition OS tries to access a portion of memory outside its boundaries, the hypervisor detects the

space violation and immediately reboots the partition.

6 EVALUATION

RTZVisor was evaluated on a Xilinx ZC702 evaluation board targeting a dual ARM Cortex-A9

running at 600MHz. In spite of using a multicore hardware architecture, the current implementation

only supports a single-core configuration. Our evaluation focused on the following metrics:

 Memory footprint: amount of memory (bytes) required by RTZVisor;

 Partition context switch: time needed by the hypervisor to switch between partitions;

 Partition performance loss: measured overhead introduced by RTZVisor at partition level.

The 4S Symposium 2016 – S. Pinto 10

To evaluate partition context-switch time and performance loss we specified two different test case

scenarios:

1. Test 1 - MMU, data and instruction cache and branch prediction (BP) support for partitions

were disabled;

2. Test 2 - MMU, data and instruction cache and branch prediction support for partitions were

enabled;

In all test scenarios RTZVisor and all RODOS OS partitions were compiled using the ARM Xilinx

toolchain, and compilation optimizations were disabled.

6.1 Memory footprint

To access memory footprint results we used the size tool of ARM Xilinx Toolchain. Table 1 presents

the collected measurements, where boot code and drivers were not take into consideration. As it can

be seen, the memory overhead introduced by the hypervisor - and in fact the trusted computing base

(TCB) of the system - is really small, i.e., around 6KB. The main reasons behind this low memory

footprint are: (i) the hardware support of TrustZone technology for virtualization; (ii) and the careful

design and static configuration of each hypervisor component.

Table 1 – Memory footprint results (bytes)

 .text .data .bss Total
RTZVisor 5568 192 0 5760

6.2 Partition context switch

To evaluate the partition context switch time we used the Performance Monitor Unit (PMU)

component. To measure the time consumed by each internal activity of the context-switch operation,

breakpoints were added at the beginning and end of each code portion to be measured. Results were

gathered in clock cycles and converted to microseconds accordingly to the processor frequency

(600MHz). Each value represents an average of ten collected samples.

Table 2 – Context-switch evaluation (microseconds)

Context-switch operation Time – Test 1 (µs) Time – Test 2 (µs)
1. Timer interrupt management 1.620 1.625

2. Save vCore context 1.873 1.867

3. MMU and cache management --- 184.417

4. Scheduler 4.000 4.003

5. vCP15 context-switch --- 4.890

6. vGIC context-switch 31.533 31.542

7. Time management 53.033 52.985

8. Memory configuration 1.053 1.052

9. Restore vCore context 1.963 1.963

TOTAL 95.075 284.344

The list of activities as well as the measured time for each test case scenario are presented in Table 2.

As it can be seen, in the first test case scenario (Test 1), the activities which present higher consuming

time are the virtual GIC context-switch and the time management. In both cases, there are a chance

to optimize both operations, because our current solution is more focused on generalization instead

The 4S Symposium 2016 – S. Pinto 11

of particularization. In the second test case scenario (Test 2), since MMU and cache support for guest

OSes are needed, the major source of overhead (approx.184µs) is related with the MMU and cache

management. On this case, there is also a chance to optimize this operation, based on some existent

works that focus on cache optimization for virtualization.

6.3 Partition performance loss

The Thread-Metric Benchmark Suite consists in a set of benchmarks specific to evaluate RTOSes

performance. The suite comprises 7 benchmarks, evaluating the most common RTOS services and

interrupt processing: cooperative scheduling (CS); preemptive scheduling (PS); interrupt processing

(IP); interrupt preemption processing (IPP); synchronization processing (SP); message processing

(MP); and memory allocation (MA). For each benchmark the score represents the RTOS impact on

the running application, where higher scores correspond to a smaller impact.

Figure 4 – Thread Metrics Benchmark Results: Test 1 (left) and Test 2 (right)

For the first part of the experiment RTZVisor was configured with a 10 milliseconds (ms) partition-

switching rate. The system was set to run one single partition, and the hypervisor scheduler was forced

to reschedule the same partition, so that results can translate the full overhead of the complete guest-

switching operation. We ran benchmarks in the native version of RODOS and compared them against

the virtualized version. Figure 4 presents the achieved results, corresponding to the normalized values

of an average of 100 collected samples for each benchmark. In both test case scenarios – Test 1 (left)

and Test 2 (right) -, it is clear that the virtualized version of RODOS only presents a very small

performance degradation when compared with its native execution - <1% and <3%, respectively. As

expected for what was stated in section 6.2, in Test 1 – Figure 4 (left) - the performance degradation

is smaller, because the guest-switching operation does not require to save the state of the CP15, as

well as performing some MMU and cache related operations.

In the second part of the experiment we evaluated how the partition-switching rate correlates with

partition performance loss. To measure the influence of partition-switching rate in the performance

loss, we repeated the experiments for a rate within a time window between 1 millisecond to 1 second.

Table 3 shows the achieved results, where each line corresponds to the average performance of the

measured results for the 6 benchmarks. As it can be seen, the performance of the virtualized RODOS

range from 91.70% to 99.98% and 73.95% to 99.96% for Test 1 and Test 2, respectively. For the

The 4S Symposium 2016 – S. Pinto 12

second test case scenario, the significant performance degradation above 5 milliseconds is mainly

explained by two reasons: first, as aforementioned, when MMU and caches are enabled, the list of

internal activities of context-switch operation is higher; and secondly, since caches have to be cleaned

and invalidated each time a partition is reschedule, partitions will not take advantage of them until

they are filled.

Table 3 – Correlation between partition-switching rate and performance loss

Context-switch tick (ms) Performance - Test 1 (%) Performance - Test 2 (%)
1000 99.98 99.96

100 99.91 99.73

50 99.83 99.46

10 99.13 97.37

5 98.30 94.75

2 95.76 86.96

1 91.70 73.95

7 CONCLUSION

Complexity of modern safety-critical systems is growing at a frenetic rate. To accompany this trend,

aeronautics and space industries are moving from full federated architectures to an IMA approach.

Virtualization technology has been used as an implementation technique to provide time and space

partitioning, but existent virtualization solutions fail in guaranteeing simultaneously flexibility and

performance.

RTZVisor is a real time hypervisor for space applications assisted by COTS technology (ARM

TrustZone). It was deployed on a commercial Xilinx ZC702 board, demonstrating how it is possible

to host an arbitrary number of partition OSes on the non-secure world side of TrustZone-enabled

processors. The hypervisor is flexible enough to run unmodified guest OSes at higher performance.

Our evaluation demonstrated virtualized OSes run with more than 99% performance for a 10

milliseconds partition-switching rate. The reduced TCB size of RTZVisor decreases also effort for

certification. The distinctive aspect of our work is the use of ARM TrustZone technology as a

foundation for hardware-based virtualization for real time space applications. Furthermore, our

solution makes use of all technologies needed for what challenges of future aerospace applications

are demanding: secure virtualization deployed under hybrid platforms.

Future work will mainly focus on the development of an inter-domain message passing schema, and

on the extension for multicore architectures. Generalization of current solution for future ARM

architectures, as well as an investigation of an hardware-software co-designed approach are also

under scope.

9 ACKNOWLEDGEMENT

This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT - Fundação

para a Ciência e Tecnologia - (grant SFRH/BD/91530/2012 and UID/CEC/00319/2013), and also by

Space Agency of the German Aerospace Center (DLR) with federal funds of the German Federal

Ministry of Economics and Technology (BMWi) under 50RM1203.

The 4S Symposium 2016 – S. Pinto 13

10 REFERENCES

[1] Abella J. et al., Towards Improved Survivability in Safety-critical Systems, Proceedings of the 17th

IEEE International On-Line Testing Symposium (IOLTS), Athens, Greece, 2011.

[2] RTCS, DO-297: Integrated Modular Avionics (IMA) Development Guidance and Certification

Considerations, Washington DC, USA, 2005.

[3] Ramsey J., Integrated Modular Avionics: Less is More, Avionics Today, 1 Feb 2007. Online:

http://www.aviationtoday.com/av/commercial/Integrated-Modular-Avionics-Less-is-

More_8420.html

[4] Diniz N. et al., ARINC 653 in Space, Proceedings of the Data Systems in Aerospace (DASIA),

Edinburgh, Scotland, 2005.

[5] Windsor J. et al, Time and space partitioning in spacecraft avionics, Proceedings of the 3rd IEEE

International Conference on Space Mission Challenges for Information Technology (SMC-IT),

California, USA, 2009.

[6] Crespo A. et al., XtratuM an Open Source Hypervisor for TSP Embedded Systems in Aerospace,

Proceedings of the Data Systems in Aerospace (DASIA), Istanbul, Turkey, 2009.

[7] Windsor J. et al, Integrated modular avionics for spacecraft - User requirements, architecture

and role definition, Proceedings of the 30th IEEE/AIAA Digital Avionics Systems Conference

(DASC), Seattle, USA, 2011.

[8] VanderLeest S.H., ARINC 653 hypervisor, Proceedings of the 29th IEEE/AIAA Digital Avionics

Systems Conference (DASC), Utah, USA, 2010.

[9] Han S. et al., Full virtualization based ARINC 653 partitioning, Proceedings of the 30th

IEEE/AIAA Digital Avionics Systems Conference (DASC), Seattle, USA, 2011.

[10] Joe H. et al., Full virtualizing micro hypervisor for spacecraft flight computer, Proceedings of

the 31st IEEE/AIAA Digital Avionics Systems Conference (DASC), Virginia, USA, 2012.

[11] Tavares A. et al., Rodosvisor - An ARINC 653 quasi-compliant hypervisor: CPU, memory and

I/O virtualization, Proceedings of the 17th IEEE Conference on Emerging Technologies & Factory

Automation (ETFA), Krakow, Poland, 2012.

[12] Garcia P. et al., Towards hardware embedded virtualization technology: architectural

enhancements to an ARM SoC, ACM SIGBED, p. 45-47, 2014.

[13] Liu C.-t. et al., CASL hypervisor and its virtualization platform, Proceedings of the 2013 IEEE

International Symposium on Circuits and Systems (ISCAS), Beijing, China, 2013.

http://www.aviationtoday.com/av/commercial/Integrated-Modular-Avionics-Less-is-More_8420.html
http://www.aviationtoday.com/av/commercial/Integrated-Modular-Avionics-Less-is-More_8420.html

The 4S Symposium 2016 – S. Pinto 14

[14] Pinto S. et al., Towards a Lightweight Embedded Virtualization Architecture Exploiting ARM

TrustZone, Proceedings of the 20th IEEE Conference on in Emerging Technologies & Factory

Automation (ETFA), Barcelona, Spain, 2014.

[15] Moratelli C. et al., Full-Virtualization on MIPS-based MPSOCs embedded platforms with real-

time support, Proceedings of the 27th Symposium on Integrated Circuits and Systems Design

(SBCCI), Aracaju, Brazil, 2014.

[16] ARM, ARM Security Technology - Building a Secure System using TrustZone Technology,

Technical Report PRD29-GENC-009492C, 2009.

[17] Cereia M. et al., Virtual machines for distributed real-time systems, Computer Standards &

Interfaces 31.1, 2009.

[18] Sangorrin D. et al., Dual operating system architecture for real-time embedded systems,

Proceedings of the 6th International Workshop on Operating Systems Platforms for Embedded Real-

Time Applications (OSPERT), Brussels, Belgium, 2010.

[19] VanderLeest S.H. et al., MPSoC hypervisor: The safe & secure future of avionics, Proceedings

of the 34th IEEE/AIAA Digital Avionics Systems Conference (DASC), Prague, Czech Republic,

2015.

[20] Heiser G., Virtualizing embedded systems - why bother?, Proceedings of the 48th

ACM/EDAC/IEEE Design Automation Conference (DAC), New York, USA, 2011.

[21] Varanasi P. et al., Hardware-supported virtualization on ARM, Proceedings of the Second Asia-

Pacific Workshop on Systems, Shanghai, China, 2011.

[22] Frenzel T. et al., ARM TrustZone as a virtualization technique in embedded systems, Proceedings

of Twelfth Real-Time Linux Workshop, Nairobi, Kenya. 2010.

[23] Zampiva S. et al., A hypervisor approach with real-time support to the MIPS M5150

processor, Proceedings of the 16th IEEE International Symposium on Quality Electronic Design

(ISQED), Santa Clara, USA, 2015.

[24] Montenegro S. et al., RODOS - Real Time Kernel Design for Dependability, ESA Special

Publication, Vol. 669, 2009.

[25] Montenegro S., Network Centric Core Avionics, Proceedings of the 1st IEEE International

Conference on Advances in Satellite and Space Communications, Colmar, France, 2009.

